292
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Influence of varying fiber volume fractions on plane waves reflecting from the stress-free/rigid surface of a piezoelectric fiber-reinforced composite half-space

ORCID Icon & ORCID Icon
Pages 5758-5772 | Received 09 Jul 2021, Accepted 31 Jul 2021, Published online: 27 Aug 2021

References

  • Y. Li and P. Wei, Reflection and transmission through a microstructured slab sandwiched by two half-spaces, Eur. J. Mech. A Solids., vol. 57, pp. 1–17, 2016. DOI: 10.1016/j.euromechsol.2015.11.005.
  • B. Singh, Reflection and transmission of plane waves at an imperfect interface between two dissimilar monoclinic elastic half-spaces, Int. J. Appl. Math. Comput., vol. 5, pp. 38–43, 2013. DOI: 10.0000/ijamc.2013.5.1.522.
  • J. Chen, J. Guo, and E. Pan, Reflection and transmission of plane wave in multilayered nonlocal magneto-electro-elastic plates immersed in liquid, Compos. Struct., vol. 162, pp. 401–410, 2017. DOI: 10.1016/j.compstruct.2016.11.004.
  • A. K. Yadav, Reflection of plane waves in a fraction-order generalized magneto-thermoelasticity in a rotating triclinic solid half-space, Mech. Adv. Mater. Struct., pp. 1–18, 2021. DOI: 10.1080/15376494.2021.1926017.
  • A. Pal and A. Chattopadhyay, The reflection phenomena of plane waves at a free boundary in a prestressed elastic half-space, J. Acoust. Soc. Am., vol. 76, no. 3, pp. 924–925, 1984. DOI: 10.1121/1.391318.
  • P. Singh, A. K. Singh, A. Chattopadhyay, and S. Guha, Mathematical study on the reflection and refraction phenomena of three-dimensional plane waves in a structure with floating frozen layer, Appl. Math. Comput., vol. 386, pp. 125488, 2020. DOI: 10.1016/j.amc.2020.125488.
  • M. Sharma, Correct procedure to study reflection in orthotropic thermoelastic medium: inhomogeneous propagation of waves, Appl. Math. Comput., vol. 391, pp. 125692, 2021. DOI: 10.1016/j.amc.2020.125692.
  • M. D. Sharma and S. Nain, Complete phenomenon of reflection at the plane boundary of a dissipative anisotropic elastic medium, Geophys. J. Int., vol. 224, no. 2, pp. 1015–1027, 2020. DOI: 10.1093/gji/ggaa502.
  • J. Curie and P. Curie, Development by compressing polar electricity in crystals at inclined faces, Mineral Newsletter., vol. 3, pp. 90–93, 1880. DOI: 10.3406/bulmi.1880.1564.
  • A. K. Singh and S. Guha, Reflection of plane waves from the surface of a piezothermoelastic fiber-reinforced composite half-space, Mech. Adv. Mater. Struct., pp. 1–13, 2020. DOI: 10.1080/15376494.2020.1736697.
  • Y. Pang, Y. S. Wang, J. X. Liu, and D. N. Fang, Reflection and refraction of plane waves at the interface between piezoelectric and piezomagnetic media, Int. J. Eng. Sci., vol. 46, no. 11, pp. 1098–1110, 2008. DOI: 10.1016/j.ijengsci.2008.04.006.
  • S. Guha and A. K. Singh, Plane wave reflection/transmission in imperfectly bonded initially stressed rotating piezothermoelastic fiber-reinforced composite half-spaces, Eur. J. Mech. A Solids, vol. 88, pp. 104242, 2021. DOI: 10.1016/j.euromechsol.2021.104242.
  • C. Othmani, L. Labiadh, C. Lü, A. R. Kamali, and F. Takali, Influence of a piezoelectric zno intermediate layer on rayleigh waves propagating in Sc 43% AIN 57%/ZnO/diamond hetero-structures subjected to uniaxial stress, Eur. Phys. J. Plus., vol. 135, no. 11, pp. 30, 2020. DOI: 10.1140/epjp/s13360-020-00912-9.
  • S. Guha and A. K. Singh, Effects of initial stresses on reflection phenomenon of plane waves at the free surface of a rotating piezothermoelastic fiber-reinforced composite half-space, Int. J. Mech. Sci., vol. 181, pp. 105766, 2020. DOI: 10.1016/j.ijmecsci.2020.105766.
  • C. Othmani and H. Zhang, Lamb wave propagation in anisotropic multilayered piezoelectric laminates made of pvdf-θ° with initial stresses, Compos. Struct., vol. 240, pp. 112085, 2020. DOI: 10.1016/j.compstruct.2020.112085.
  • X. Yuan, Q. Jiang, and F. Yang, Wave reflection and transmission in rotating and stressed pyroelectric half-planes, Appl. Math. Comput., vol. 289, pp. 281–297, 2016. DOI: 10.1016/j.amc.2016.05.016.
  • B. Singh, Propagation of shear waves in a piezoelectric medium, Mech. Adv. Mater. Struct., vol. 20, no. 6, pp. 434–440, 2013. DOI: 10.1080/15376494.2011.627633.
  • S. Guha, A. Singh, and A. Das, Analysis on different types of imperfect interfaces between two dissimilar piezothermoelastic half-spaces on reflection and refraction phenomenon of plane waves, Waves Random Complex Medium., vol. 31, no. 4, pp. 660–689, 2021. DOI: 10.1080/17455030.2019.1610198.
  • M. S. Chaki and A. K. Singh, The impact of reinforcement and piezoelectricity on sh wave propagation in irregular imperfectly-bonded layered fgpm structures: an analytical approach, Eur. J. Mech. A Solids., vol. 80, pp. 103872, 2020. DOI: 10.1016/j.euromechsol.2019.103872.
  • M. S. Chaki and A. K. Singh, Anti-plane wave in a piezoelectric viscoelastic composite medium: a semi-analytical finite element approach using pml, Int. J. Appl. Mech., vol. 12, no. 02, pp. 2050020, 2020. DOI: 10.1142/S1758825120500209.
  • S. I. Tahir et al., An integral four-variable hyperbolic hsdt for the wave propagation investigation of a ceramic-metal fgm plate with various porosity distributions resting on a viscoelastic foundation, Waves Random Complex Medium, pp. 1–24, 2021.
  • S. I. Tahir et al., Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment, Compos. Struct., vol. 269, pp. 114030, 2021. DOI: 10.1016/j.compstruct.2021.114030.
  • M. Al-Furjan et al., A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel, Eng. Comput., pp. 1–18, 2020.
  • R. Hill, Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour, J. Mech. Phys. Solids., vol. 12, no. 4, pp. 199–212, 1964. DOI: 10.1016/0022-5096(64)90019-5.
  • N. Mallik and M. Ray, Effective coefficients of piezoelectric fiber-reinforced composites, AIAA J., vol. 41, no. 4, pp. 704–710, 2003. DOI: 10.2514/2.2001.
  • A. Kumar and D. Chakraborty, Effective properties of thermo-electro-mechanically coupled piezoelectric fiber reinforced composites, Mater. Des., vol. 30, no. 4, pp. 1216–1222, 2009. DOI: 10.1016/j.matdes.2008.06.009.
  • M. C. Ray, Micromechanics of piezoelectric composites with improved effective piezoelectric constant, Int. J. Mech. Mater. Des., vol. 3, no. 4, pp. 361–371, 2007. DOI: 10.1007/s10999-007-9046-y.
  • H. Berger et al., An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites, Int. J. Solids Struct., vol. 42, no. 21-22, pp. 5692–5714, 2005. DOI: 10.1016/j.ijsolstr.2005.03.016.
  • L. B. de León et al., Semi-analytic finite element method applied to short-fiber-reinforced piezoelectric composites, Continuum Mech. Thermodyn., vol. 33, no. 4, pp. 1957–1922, 2021. DOI: 10.1007/s00161-021-01016-0.
  • Y. C. Lin, K. S. Tseng, and C. C. Ma, Investigation of resonant and energy harvesting characteristics of piezoelectric fiber composite bimorphs, Mater. Des., vol. 197, pp. 109267, 2021. DOI: 10.1016/j.matdes.2020.109267.
  • O. Allam et al., A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells, Comput. Concr., vol. 26, no. 2, pp. 185–201, 2020. DOI: 10.12989/cac.2020.26.2.185.
  • N. Belbachir et al., Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory, Smart Struct. Syst., vol. 25, no. 4, pp. 409–422, 2020. DOI: 10.12989/sss.2020.25.4.409.
  • K. Draiche et al., Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory, Comput. Concr., vol. 24, no. 4, pp. 369–378, 2019. DOI: 10.12989/cac.2019.24.4.369.
  • M. Abualnour et al., Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory, Comput. Concr., vol. 24, no. 6, pp. 489–498, 2019. DOI: 10.12989/cac.2019.24.6.489.
  • N. Belbachir et al., Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings, Steel Compos. Struct., vol. 33, no. 1, pp. 81–92, 2019. DOI: 10.12989/scs.2019.33.1.081.
  • M. Sahla et al., Free vibration analysis of angle-ply laminated composite and soft core sandwich plates, Steel Compos. Struct., vol. 33, no. 5, pp. 663–679, 2019. DOI: 10.12989/scs.2019.33.5.663.
  • S. K. Samal and R. Chattaraj, Surface wave propagation in fiber-reinforced anisotropic elastic layer between liquid saturated porous half space and uniform liquid layer, Acta Geophys., vol. 59, no. 3, pp. 470–482, 2011. DOI: 10.2478/s11600-011-0002-8.
  • H. Dai and X. Wang, Stress wave propagation in piezoelectric fiber reinforced laminated composites subjected to thermal shock, Compos. Struct., vol. 74, no. 1, pp. 51–62, 2006. DOI: 10.1016/j.compstruct.2005.03.007.
  • H. Bisheh, N. Wu, and D. Hui, Polarization effects on wave propagation characteristics of piezoelectric coupled laminated fiber-reinforced composite cylindrical shells, Int. J. Mech. Sci., vol. 161-162, pp. 105028, 2019. DOI: 10.1016/j.ijmecsci.2019.105028.
  • M. K. Dubey and S. Panda, Shear-based vibration control of annular sandwich plates using different piezoelectric fiber composites: a comparative study, J. Sandw. Struct. Mater., vol. 23, no. 2, pp. 405–435, 2021. DOI: 10.1177/1099636219838446.
  • Y. Benveniste and G. Dvorak, Uniform fields and universal relations in piezoelectric composites, J. Mech. Phys. Solids., vol. 40, no. 6, pp. 1295–1312, 1992. DOI: 10.1016/0022-5096(92)90016-U.
  • X. K. Xia and H. S. Shen, Nonlinear vibration and dynamic response of fgm plates with piezoelectric fiber reinforced composite actuators, Compos. Struct., vol. 90, no. 2, pp. 254–262, 2009. DOI: 10.1016/j.compstruct.2009.03.018.
  • C. W. Nan and F. S. Jin, Multiple-scattering approach to effective properties of piezoelectric composites, Phys. Rev. B Condens. Matter., vol. 48, no. 12, pp. 8578–8582, 1993. DOI: 10.1103/physrevb.48.8578.
  • X. Guo and P. Wei, Effects of initial stress on the reflection and transmission waves at the interface between two piezoelectric half spaces, Int. J. Solids Struct., vol. 51, no. 21-22, pp. 3735–3751, 2014. DOI: 10.1016/j.ijsolstr.2014.07.008.
  • A. H. Nayfeh, Wave propagation in layered anisotropic media: with application to composites. Elsevier, Amsterdam, The Netherlands, 1995.
  • K. K. Kalkal, S. K. Sheokand, and S. Deswal, Reflection and transmission between thermoelastic and initially stressed fiber-reinforced thermoelastic half-spaces under dual-phase-lag model, Acta Mech., vol. 230, no. 1, pp. 87–104, 2019. DOI: 10.1007/s00707-018-2302-4.
  • A. Chattopadhyay et al., Reflection and refraction of waves at the interface of an isotropic medium over a highly anisotropic medium, Acta Geophys., vol. 54, no. 3, pp. 239–249, 2006. DOI: 10.2478/s11600-006-0022-y.
  • J. Achenbach, Wave propagation in elastic solids. Elsevier, Amsterdam, the Netherlands, 2012.
  • F. A. Alshaikh, The mathematical modelling for studying the influence of the initial stresses and relaxation times on reflection and refraction waves in piezothermoelastic half-space, AM., vol. 03, no. 08, pp. 819–832, 2012. DOI: 10.4236/am.2012.38123.
  • T. Gomm and J. Mauseth, State of the technology: ultrasonic tomography, Mater. Eval., vol. 57, no. 7, pp. 747–752, 1999.
  • R. E. Sheriff and L. P. Geldart, Exploration seismology. Cambridge University Press, New York, 1995.
  • K. H. Waters and K. H. Waters, Reflection seismology: a tool for energy resource exploration, Wiley, New York, 1981.
  • M. Vijaya, Piezoelectric materials and devices: applications in engineering and medical sciences, CRC Press, Boca Raton, FL, 2012.
  • P. E. Mix, Introduction to nondestructive testing: a training guide, John Wiley & Sons, Hoboken, New Jersey, 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.