279
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Numerical investigation of dual-row batter pile wall in deep excavation

, , , &
Pages 5793-5807 | Received 19 Jul 2021, Accepted 03 Aug 2021, Published online: 24 Aug 2021

References

  • H. Dang, H. Lin, and C.H. Juang, Analyses of braced excavation considering parameter uncertainties using a finite element code, J. Chin. Inst. Eng., vol. 37, no. 2, pp. 141–151, 2014. DOI: 10.1080/02533839.2013.781790.
  • P. Fok, B.H. Neo, D. Wen, and C. Veeresh, Design and construction of earth retaining walls for deep excavation – a risk management process, IES J. Part A: Civ. Struct. Eng., vol. 5, no. 3, pp. 204–209, 2012. DOI: 10.1080/19373260.2012.696441.
  • K.H. Goh, W.M. Cham, and D. Wen, Improving the prediction of excavation-induced ground movements, IES J. Part A: Civ. Struct. Eng., vol. 5, no. 3, pp. 140–151, 2012. DOI: 10.1080/19373260.2012.696442.
  • H. Xiao, S. Zhou, and Y. Sun, Wall deflection and ground surface settlement due to excavation width and foundation pit classification, KSCE J. Civ. Eng., vol. 23, no. 4, pp. 1537–1547, 2019. DOI: 10.1007/s12205-019-1712-8.
  • R. Zhang, W. Zhang, and A.T.C. Goh, Numerical investigation of pile responses caused by adjacent braced excavation in soft clays, Int. J. Geotech. Eng., vol. 15, no. 7, pp. 783–797, 2021. DOI: 10.1080/19386362.2018.1515810.
  • C.G. Chinnaswamy, and D.N.G. Chew Chiat, Zheng G. Assessment of pile response due to deep excavation in close proximity—a case study based on DTL3 Tampines West Station, Cogent Eng., vol. 2, no. 1, pp. 1014247–1014216, 2015. DOI: 10.1080/23311916.2015.1014247.
  • H. Yang, D. Huang, X. Yang, and X. Zhou, Analysis model for the excavation damage zone in surrounding rock mass of circular tunnel, Tunnelling Underground Space Technol., vol. 35, pp. 78–88, 2013. DOI: 10.1016/j.tust.2012.12.006.
  • Y. Zhao, H. Yang, Z. Chen, X. Chen, L. Huang, and S. Liu, Effects of jointed rock mass and mixed ground conditions on the cutting efficiency and cutter wear of tunnel boring machine, Rock Mech. Rock Eng., vol. 52, no. 5, pp. 1303–1313, 2019. DOI: 10.1007/s00603-018-1667-y.
  • F.F. Boroujeni and R. Porhoseini, Effect of execution process on pile group-excavation interaction, Int. J. Geotech. Eng., pp. vol. 14, no. 1778155, 1–9, 2020. DOI: 10.1080/19386362.2020.1778155.
  • L. Zhu, Y. Wang, G. Zhou, and B. Han, Structural health monitoring on a steel-concrete composite continuous bridge during construction and vehicle load tests, Mech. Adv. Mater. Struct., vol. 27, no. 1820117, pp. 1–16, 2020. DOI: 10.1080/15376494.2020.1820117.
  • M. Farzi, M.S. Pakbaz, and H.A. Aminpour, Selection of support system for urban deep excavations: A case study in Ahvaz geology, Case Stud. Constr. Mater., vol. 8, pp. 131–138, 2018. DOI: 10.1016/j.cscm.2018.01.004.
  • C. Lee, H. Chen, Y. Wei, Y. Lin, W. Huang, and K. Chiang, Centrifuge modeling of a self-supported double soldier-piled wall in sandy soil, J. GeoEng., vol. 2, no. 3, pp. 97–109, 2007. DOI: 10.6310/jog.2007.2(3).2.
  • Y.R. Zhao, H.Q. Yang, L.P. Huang, R. Chen, X.S. Chen, and S.Y. Liu, Mechanical behavior of intact completely decomposed granite soils along multi-stage loading–unloading path, Eng. Geol., vol. 260, pp. 105242, 2019. DOI: 10.1016/j.enggeo.2019.105242.
  • Y.R. Zhao, Q. Xie, G.L. Wang, Y.J. Zhang, Y.X. Zhang, and W. Su, A study of shear strength properties of municipal solid waste in Chongqing landfill, China, Environ. Sci. Pollut. Res. Int., vol. 21, no. 22, pp. 12605–12615, 2014. DOI: 10.1007/s11356-014-3183-2.
  • A.T.C. Goh, R.H. Zhang, W. Wang, L. Wang, H.L. Liu, and W.G. Zhang, Numerical study of the effects of groundwater drawdown on ground settlement for excavation in residual soils, Acta Geotech., vol. 15, no. 5, pp. 1259–1272, 2020. DOI: 10.1007/s11440-019-00843-5.
  • Y. Zhang, Z. Zhang, S. Xue, R. Wang, and M. Xiao, Stability analysis of a typical landslide mass in the Three Gorges Reservoir under varying reservoir water levels, Environ. Earth Sci., vol. 79, no. 1, pp. 1–14, 2020. DOI: 10.1007/s12665-019-8779-x.
  • M. Khosravi, M.H. Khosravi, and S.H. Ghoreishi Najafabadi, Determining the portion of dewatering-induced settlement in excavation pit projects, Int. J. Geotech. Eng., vol. 15, no. 5, pp. 563–573, 2021. DOI: 10.1080/19386362.2018.1467858.
  • Y. Zhang, et al., Application of an enhanced BP neural network model with water cycle algorithm on landslide prediction, Stoch. Environ. Res. Risk Assess., vol. 35, no. 6, pp. 1273–1291, 2021. DOI: 10.1007/s00477-020-01920-y.
  • M.R. Das, and S.K. Das, Optimal design of sheet pile wall embedded in clay, J. Inst. Eng. India. Ser. A., vol. 96, no. 3, pp. 249–258, 2015. DOI: 10.1007/s40030-015-0128-9.
  • F. Rashidi, and H. Shahir, Numerical investigation of anchored soldier pile wall performance in the presence of surcharge, Int. J. Geotech. Eng., vol. 13, no. 2, pp. 162–171, 2019. DOI: 10.1080/19386362.2017.1329258.
  • A.P. Singh, and K. Chatterjee, A simplified method for seismic design of cantilever sheet pile walls under infinite uniform surcharge load, Int. J. Geomech., vol. 20, no. 9, pp. 04020139, 2020. DOI: 10.1061/(ASCE)GM.1943-5622.0001764.
  • M. Beygi, A. Keshavarz, M. Abbaspour, R. Vali, M. Saberian, and J. Li, Finite element limit analysis of the seismic bearing capacity of strip footing adjacent to excavation in c-φ soil, Geomech. Geoeng., vol. 15, no. 1728396, pp. 1–14, 2020. DOI: 10.1080/17486025.2020.1728396.
  • T. Bhatkar, D. Barman, A. Mandal, and A. Usmani, Prediction of behaviour of a deep excavation in soft soil: a case study, Int. J. Geotech. Eng., vol. 11, no. 1, pp. 10–19, 2017. DOI: 10.1080/19386362.2016.1177309.
  • S. Khoshnevisan, L. Wang, and C.H. Juang, Response surface-based robust geotechnical design of supported excavation – spreadsheet-based solution, Georisk: Assess. Manage. Risk Eng. Syst., vol. 11, no. 1, pp. 90–102, 2016. DOI: 10.1080/17499518.2016.1247285.
  • C. Lee, Y. Wei, H. Chen, Y. Chang, Y. Lin, and W. Huang, Stability analysis of cantilever double soldier-piled walls in sandy soil, J. Chin. Inst. Eng., vol. 34, no. 4, pp. 449–465, 2011. DOI: 10.1080/02533839.2011.576488.
  • T. Mizutani, H. Akutagawa, H. Yonezawa, and K. Takahashi, Static behavior of double sheet-pile wall structures with high rigidity partitions, Kawasaki Steel Tech. Rep., vol. 27, no. 4, pp. 242–247, 1996.
  • M. Gui and K. Han, An investigation on a failed double-wall cofferdam during construction, Eng. Fail. Anal., vol. 16, no. 1, pp. 421–432, 2009. DOI: 10.1016/j.engfailanal.2008.06.004.
  • J. Ye, J. Yu, and Z. Lin, Model test of cantilever double-row anti-slide pile using horizontal pushing method, China Civ. Eng. J., vol. 52, no. s1, pp. 193–201, 2019. DOI: 10.15951/j.tmgcxb.2019.s1.025.
  • C. Li, W. Chen, Y. Song, W. Gong, and Q. Zhao, Optimal location of piles in stabilizing slopes based on a simplified double-row piles model, KSCE J. Civ. Eng., vol. 24, no. 2, pp. 377–389, 2020. DOI: 10.1007/s12205-020-0712-z.
  • Z. Wang, Y. Yu, H. Sun, Q. Lü, and Y. Shang, Robust optimization of the constructional time delay in the design of double-row stabilizing piles, Bull. Eng. Geol. Environ., vol. 79, no. 1, pp. 53–67, 2020. DOI: 10.1007/s10064-019-01554-7.
  • Z. Wang, and J. Zhou, Three-dimensional numerical simulation and earth pressure analysis on double-row piles with consideration of spatial effects, J. Zhejiang Univ. Sci. A, vol. 12, no. 10, pp. 758–770, 2011. DOI: 10.1631/jzus.A1100067.
  • J. Ye, and X. He, Evaluation of flexural stiffness on mechanical property of dual row retaining pile wall, Mech. Adv. Mater. Struct., vol. 27, no. 1800874, pp. 1–12, 2020. DOI: 10.1080/15376494.2020.1800874.
  • J. Ye, C. Wang, W. Huang, J. Zhang, and X. Zhou, Effect of inclination angle on the response of double-row retaining piles: experimental and numerical investigation, Tehnicki vjesnik - Technical Gazette., vol. 27, no. 4, pp. 1150–1159, 2020. DOI: 10.17559/tv-20200408155204.
  • H. Tan, Z. Jiao, and J. Chen, Field testing and numerical analysis on performance of anchored sheet pile quay wall with separate pile-supported platform, Mar. Struct., vol. 58, no. 2018, pp. 382–398, 2018. DOI: 10.1016/j.marstruc.2017.12.006.
  • H. Zhou, et al., Numerical modelling of retaining structure displacements in multi-bench retained excavations, Acta Geotech., vol. 15, no. 9, pp. 2691–2703, 2020. DOI: 10.1007/s11440-020-00947-3.
  • C. Xu, and W. Yao, Buckling analysis of super-long rock-socketed piles based on double-parameter foundation model, Mech. Adv. Mater. Struct., vol. 1799270, pp. 1–7, 2020. DOI: 10.1080/15376494.2020.1799270.
  • Y. Shen, Y. Yu, F. Ma, F. Mi, and Z. Xiang, Earth pressure evolution of the double-row long-short stabilizing pile system, Environ. Earth Sci., vol. 76, no. 16, pp. 1–11, 2017. DOI: 10.1007/s12665-017-6907-z.
  • G. Fan, J. Zhang, S. Qi, and J. Wu, Dynamic response of a slope reinforced by double-row anti-sliding piles and pre-stressed anchor cables, J. Mt. Sci., vol. 16, no. 1, pp. 226–241, 2019. DOI: 10.1007/s11629-018-5041-z.
  • M. Sawaguchi, Lateral behavior of a double sheet pile wall structure, Soils Found., vol. 14, no. 1, pp. 45–59, 1974. DOI: 10.3208/sandf1972.14.45.
  • M. Fall, Z. Gao, and B.C. Ndiaye, Subway tunnels displacement analysis due to two different communication channels construction procedures, Heliyon, vol. 5, no. 6, pp. e01949 2019. DOI: 10.1016/j.heliyon.2019.e01949.
  • M.I. Ramadan and M. Meguid, Behavior of cantilever secant pile wall supporting excavation in sandy soil considering pile-pile interaction, Arab. J. Geosci., vol. 13, no. 12, pp. 1–13, 2020. DOI: 10.1007/s12517-020-05483-8.
  • B. Liu, D. Zhang, and P. Xi, Influence of vehicle load mode on the response of an asymmetrically-loaded deep excavation, KSCE J. Civ. Eng., vol. 23, no. 8, pp. 3315–3329, 2019. DOI: 10.1007/s12205-019-0511-6.
  • A.P. Singh and K. Chatterjee, Ground settlement and deflection response of cantilever sheet pile wall subjected to surcharge loading, Indian Geotech. J., vol. 50, no. 4, pp. 540–549, 2020. DOI: 10.1007/s40098-019-00387-1.
  • A.P. Singh, and K. Chatterjee, Influence of soil type on static response of cantilever sheet pile walls under surcharge loading: a numerical study, Arab. J. Geosci., vol. 13, no. 3, pp. 1–11, 2020. DOI: 10.1007/s12517-020-5170-x.
  • J.J. Nisha, M. Muttharam, M. Vinoth, and C.R.E. Prasad, Design, Construction and Uncertainties of a Deep Excavation Adjacent to the High-Rise Building, Indian Geotech. J., vol. 49, no. 5, pp. 580–594, 2019. DOI: 10.1007/s40098-019-00368-4.
  • D.S. Liyanapathirana, and R. Nishanthan, Influence of deep excavation induced ground movements on adjacent piles, Tunnelling Underground Space Technol., vol. 52, pp. 168–181, 2016. DOI: 10.1016/j.tust.2015.11.019.
  • S. Zhang, Y. Wei, X. Cheng, T. Chen, X. Zhang, and Z. Li, Centrifuge modeling of batter pile foundations in laterally spreading soil, Soil Dyn. Earthquake Eng., vol. 135, pp. 106166–106112, 2020. DOI: 10.1016/j.soildyn.2020.106166.
  • A. Vytiniotis, A.I. Panagiotidou, and A.J. Whittle, Analysis of seismic damage mitigation for a pile-supported wharf structure, Soil Dyn. Earthquake Eng., vol. 119, pp. 21–35, 2019. DOI: 10.1016/j.soildyn.2018.12.020.
  • J. Huang and G. Chen, Experimental modeling of wave load on a pile-supported wharf with pile breakwater, Ocean Eng., vol. 201, no.107149, pp. 1–13, 2020. DOI: 10.1016/j.oceaneng.2020.107149.
  • M. Shakeel and C.W.W. Ng, Settlement and load transfer mechanism of a pile group adjacent to a deep excavation in soft clay, Comput. Geotech., vol. 96, pp. 55–72, 2018. DOI: 10.1016/j.compgeo.2017.10.010.
  • C.S. Goit and M. Saitoh, Model tests and numerical analyses on horizontal impedance functions of inclined single piles embedded in cohesionless soil, Earthq. Eng. Eng. Vib., vol. 12, no. 1, pp. 143–154, 2013. DOI: 10.1007/s11803-013-0158-0.
  • J.S. Palammal and P.K. Senthilkumar, Behavioural analysis of vertical and batter pile groups under vertical and lateral loading in sand, Arabian J. Geosci., vol. 11, no. 706, pp. 1–7, 2018. DOI: 10.1007/s12517-018-4032-2.
  • P. Bajaj, L. Yadu, and S.K. Chouksey, Behavior of vertical and batter piles under lateral, uplift and combined loads in non-cohesive soil, Innov. Infrastruct. Solutions, vol. 4, no. 1, pp. 1–17, 2019. DOI: 10.1007/s41062-019-0242-z.
  • M. Ghazavi, P. Ravanshenas, and A.A. Lavasan, Analytical and numerical solution for interaction between batter pile group, KSCE J. Civ. Eng., vol. 18, no. 7, pp. 2051–2063, 2014. DOI: 10.1007/s12205-014-0082-5.
  • H. Ghasemzadeh, M. Tarzaban, and M.M. Hajitaheriha, Numerical analysis of pile–soil–pile interaction in pile groups with batter piles, Geotech. Geol. Eng., vol. 36, no. 4, pp. 2189–2215, 2018. DOI: 10.1007/s10706-018-0456-4.
  • T. Maeda, Y. Shimada, S. Takahashi, and Y. Sakahira, Design and construction of inclined-braceless excavation support applicable to deep excavation, Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, vol. 207, 2013, pp. 2051–2054.
  • M. Seo, J. Im, C. Kim, and J.-W. Yoo, A study on the applicability of a retaining wall using batter piles in clay, Can. Geotech. J., vol. 53, no. 8, pp. 1195–1212, 2016. DOI: 10.1139/cgj-2014-0264.
  • J. Ye and X. He, Response of dual-row retaining pile walls under surcharge load, Mech. Adv. Mater. Struct., vol. 27, no. 1832286, pp. 1–12, 2020. DOI: 10.1080/15376494.2020.1832286.
  • X. Xu, R. Augello, and H. Yang, The generation and validation of a CUF-based FEA model with laser-based experiments, Mech. Adv. Mater. Struct., vol. 28, no. 1697473, pp. 1648-1655, 2021. DOI: 10.1080/15376494.2019.1697473.
  • X. Xu, N. Fallahi, and H. Yang, Efficient CUF-based FEM analysis of thin-wall structures with Lagrange polynomial expansion, Mech. Adv. Mater. Struct., vol. 27, no. 1818331, pp. 1–22, 2020, 2020. DOI: 10.1080/15376494.2020.1818331.
  • H. Yang, X. Xu, B. Kargoll, and I. Neumann, An automatic and intelligent optimal surface modeling method for composite tunnel structures, Compos. Struct., vol. 208, no. 2, pp. 702–710, 2019. DOI: 10.1016/j.compstruct.2018.09.082.
  • X. Xu, E. Carrera, R. Augello, E. Daneshkhah, and H. Yang, Benchmarks for higher-order modes evaluation in the free vibration response of open thin-walled beams due to the cross-sectional deformations, Thin-Walled Struct., vol. 166, no. 107965, pp. 1–23, 2021. DOI: 10.1016/j.tws.2021.107965.
  • V. De Luca, and A.A. Della Chiesa, Creep non-linear FEM analysis of glulam timber, Mech. Adv. Mater. Struct., vol. 20, no. 6, pp. 489–496, 2013. DOI: 10.1080/15376494.2011.627643.
  • T.I. Altanopoulos, I.G. Raftoyiannis, and D. Polyzois, Finite element method for the static behavior of tapered poles made of glass fiber reinforced polymer, Mech. Adv. Mater. Struct., vol. 27, no. 1717691, pp. 1–10, 2020. DOI: 10.1080/15376494.2020.1717691.
  • H. Heidarzadeh, and R. Kamgar, Necessity of applying the concept of the steady state on the numerical analyses of excavation issues: laboratory, field and numerical investigations, Geomech. Geoeng., vol. 15, no.1755466, pp. 1–13, 2020. DOI: 10.1080/17486025.2020.1755466.
  • M. Lezgy-Nazargah, A finite element model for static analysis of curved thin-walled beams based on the concept of equivalent layered composite cross section, Mech. Adv. Mater. Struct., vol. 27, no. 1804649, pp. 1–14, 2020. DOI: 10.1080/15376494.2020.1804649.
  • G. Nascimento, M. Ehrlich, and S.H. Mirmoradi, Numerical- simulation of compaction-induced stress for the analysis of RS walls under surcharge loading, Geotext. Geomembr., vol. 48, no. 4, pp. 532–538, 2020. DOI: 10.1016/j.geotexmem.2020.02.011.
  • Y. Lin, X. Cheng, G. Yang, and Y. Li, Seismic response of a sheet-pile wall with anchoring frame beam by numerical simulation and shaking table test, Soil Dyn. Earthquake Eng., vol. 115, pp. 352–364, 2018. DOI: 10.1016/j.soildyn.2018.07.028.
  • M. Li, X. Xiao, J. Wang, and J. Chen, Numerical study on responses of an existing metro line to staged deep excavations, Tunnelling Underground Space Technol., vol. 85, pp. 268–281, 2019. DOI: 10.1016/j.tust.2018.12.005.
  • D. Kong, M. Deng, and Y. Li, Numerical simulation of seismic soil-pile interaction in liquefying ground, IEEE Access, vol. 8, pp. 195–204, 2020. DOI: 10.1109/ACCESS.2019.2925664.
  • M.N. Houhou, F. Emeriault, and A. Belounar, Three-dimensional numerical back-analysis of a monitored deep excavation retained by strutted diaphragm walls, Tunnelling Underground Space Technol., vol. 83, pp. 153–164, 2019. DOI: 10.1016/j.tust.2018.09.013.
  • L. Yang, X. Geng, and X. Cao, A novel knowledge representation model based on factor state space, Optik – Int. J. Light Electron Opt., vol. 127, no. 12, pp. 5141–5147, 2016. DOI: 10.1016/j.ijleo.2016.02.074.
  • A. Kamel, K. Dammak, A. El Hami, Ben Jdidia, M. Hammami, and L. Haddar, M. A modified hybrid method for a reliability-based design optimization applied to an offshore wind turbine, Mech. Adv. Mater. Struct., vol. 1811927, pp. 1–14, 2020. DOI: 10.1080/15376494.2020.1811927.
  • Y. Diao and G. Zheng, Numerical analysis of effect of friction between diaphragm wall and soil on braced excavation, J. Cent. South Univ. Technol., vol. 15, no. s2, pp. 81–86, 2008. DOI: 10.1007/s11771 − 008 − 0440 − x.
  • A. Lim, C. Ou, and P. Hsieh, Investigation of the integrated retaining system to limit deformations induced by deep excavation, Acta Geotech., vol. 13, no. 4, pp. 973–995, 2018. DOI: 10.1007/s11440-017-0613-6.
  • A. Lim, C. Ou, and P. Hsieh, An innovative earth retaining supported system for deep excavation, Comput. Geotech., vol. 114, pp. 103135, 2019. DOI: 10.1016/j.compgeo.2019.103135.
  • X. Liu and S. Liu, Study on deformation characteristics of deep foundation excavation in soft-soil and the response of different retaining configurations, Geotech. Geol. Eng., vol. 30, no. 2, pp. 313–329, 2012. DOI: 10.1007/s10706-011-9470-5.
  • C. Chheng and S. Likitlersuang, Underground excavation behaviour in Bangkok using three-dimensional finite element method, Comput. Geotech., vol. 95, pp. 68–81, 2018. DOI: 10.1016/j.compgeo.2017.09.016.
  • W. Zhang, Z. Hou, A.T.C. Goh, and R. Zhang, Estimation of strut forces for braced excavation in granular soils from numerical analysis and case histories, Comput. Geotech., vol. 106, pp. 286–295, 2019. DOI: 10.1016/j.compgeo.2018.11.006.
  • L. Yang, X. Cao, and J. Li, A new cyber security risk evaluation method for oil and gas SCADA based on factor state space, Chaos Solitons Fractals, vol. 89, pp. 203–209, 2016. DOI: 10.1016/j.chaos.2015.10.030.
  • A. Ahmadi, and M.M. Ahmadi, Three-dimensional numerical analysis of corner effect of an excavation supported by ground anchors, Int. J. Geotech. Eng., vol. 14, no. 1682349, pp. 1–13, 2019. DOI: 10.1080/19386362.2019.1682349.
  • P.L. Teo, and K.S. Wong, Application of the Hardening Soil model in deep excavation analysis, IES J. Part A: Civ. Struct. Eng., vol. 5, no. 3, pp. 152–165, 2012. DOI: 10.1080/19373260.2012.696445.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.