293
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Structural system reliability analysis based on multi-modal optimization and saddlepoint approximation

ORCID Icon, , &
Pages 5876-5884 | Received 24 May 2021, Accepted 10 Aug 2021, Published online: 06 Sep 2021

References

  • R. Yadav and R. Ganguli, Reliability based and robust design optimization of truss and composite plate using particle swarm optimization, Mech. Adv. Mater. Struct., 2020. DOI: 10.1080/15376494.2020.1843743.
  • A. Kamel, K. Dammak, AEl Hami, M. Ben Jdidia, L. Hammami, and M. Haddar, A modified hybrid method for a reliability-based design optimization applied to an offshore wind turbine, Mech. Adv. Mater. Struct., 2020. DOI: 10.1080/15376494.2020.1811927.
  • B. Debich, AEl Hami, A. Yaich, W. Gafsi, L. Walha, and M. Haddar, An efficient reliability-based design optimization study for PCM-based heat-sink used for cooling electronic devices, Mech. Adv. Mater. Struct., 2020. DOI: 10.1080/15376494.2020.1836291.
  • O. Ditlevsen, Narrow reliability bounds for structural systems, J. Struct. Mech., vol. 7, no. 4, pp. 453–472, 1979. DOI: 10.1080/03601217908905329.
  • M. Hohenbichler and R. Rackwitz, First-order concepts in system reliability, Struct. Saf., vol. 1, no. 3, pp. 177–188, 1982. DOI: 10.1016/0167-4730(82)90024-8.
  • J. Song and A. Der Kiureghian, Bounds on system reliability by linear programming, J. Eng. Mech., vol. 129, no. 6, pp. 627–636, 2003. DOI: 10.1061/(ASCE)0733-9399(2003)129:6(627).
  • B. D. Youn and P. Wang, Complementary intersection method for system reliability analysis, J. Mech. Des., vol. 131, no. 4, p. 041004, 2009.
  • X. Du, System reliability analysis with saddlepoint approximation, Struct. Multidisc. Optim., vol. 42, no. 2, pp. 193–208, 2010. DOI: 10.1007/s00158-009-0478-x.
  • Z. Xiao, Q. Lv, J. Zheng, J. Liu, and J. Ji, Conditional probability-based system reliability analysis for geotechnical problems, Comput. Geotech., vol. 126, p. 103751, 2020. DOI: 10.1016/j.compgeo.2020.103751.
  • P. Zeng, T. Li, R. Jimenez, X. Feng, and Y. Chen, Extension of quasi-Newton approximation-based SORM for series system reliability analysis of geotechnical problems, Eng. Comput., vol. 34, no. 2, pp. 215–224, 2018. DOI: 10.1007/s00366-017-0536-8.
  • H. Lu and Z. Zhu, A method for estimating the reliability of structural systems with moment-matching and copula concept, Mech. Based Des. Struct. Mech., vol. 46, no. 2, pp. 196–208, 2018. DOI: 10.1080/15397734.2017.1324312.
  • C. Ling and Z. Lu, Adaptive Kriging coupled with importance sampling strategies for time-variant hybrid reliability analysis, Appl. Math. Model., vol. 77, pp. 1820–1841, 2020. DOI: 10.1016/j.apm.2019.08.025.
  • D. G. Giovanis, I. Papaioannou, D. Straub, and V. Papadopoulos, Bayesian updating with subset simulation using artificial neural networks, Comput. Meth. Appl. Mech. Eng., vol. 319, pp. 124–145, 2017. DOI: 10.1016/j.cma.2017.02.025.
  • X. Yuan, Z. Zheng, and B. Zhang, Augmented line sampling for approximation of failure probability function in reliability-based analysis, Appl. Math. Model., vol. 80, pp. 895–910, 2020.
  • P. Zeng, T. Li, Y. Chen, R. Jimenez, X. Feng, and S. Senent, New collocation method for stochastic response surface reliability analyses, Eng. Comput., vol. 36, no. 4, pp. 1751–1762, 2020. DOI: 10.1007/s00366-019-00793-2.
  • X. Huang, Y. Liu, Y. Zhang, and X. Zhang, Reliability analysis of structures using stochastic response surface method and saddlepoint approximation, Struct. Multidisc. Optim., vol. 55, no. 6, pp. 2003–2012, 2017. DOI: 10.1007/s00158-016-1617-9.
  • P. G. Asteris, S. Nozhati, M. Nikoo, L. Cavaleri, and M. Nikoo, Krill herd algorithm-based neural network in structural seismic reliability evaluation, Mech. Adv. Mater. Struct., vol. 26, no. 13, pp. 1146–1153, 2019. DOI: 10.1080/15376494.2018.1430874.
  • K. Cheng and Z. Lu, Adaptive Bayesian support vector regression model for structural reliability analysis, Reliab. Eng. Syst. Saf., vol. 206, p. 107286, 2021. DOI: 10.1016/j.ress.2020.107286.
  • Y. Zhang and J. Xu, Efficient reliability analysis with a CDA-based dimension-reduction model and polynomial chaos expansion, Comput. Meth. Appl. Mech. Eng., vol. 373, p. 113467, 2021. DOI: 10.1016/j.cma.2020.113467.
  • Y. Zhou, Z. Lu, and W. Yun, Active sparse polynomial chaos expansion for system reliability analysis, Reliab. Eng. Syst. Saf., vol. 202, p. 107025, 2020. DOI: 10.1016/j.ress.2020.107025.
  • N. Xiao, H. Zhan, and K. Yuan, A new reliability method for small failure probability problems by combining the adaptive importance sampling and surrogate models, Comput. Meth. Appl. Mech. Eng., vol. 372, p. 113336, 2020. DOI: 10.1016/j.cma.2020.113336.
  • J. Zhang, M. Xiao, L. Gao, and S. Chu, A combined projection-outline-based active learning Kriging and adaptive importance sampling method for hybrid reliability analysis with small failure probabilities, Comput. Meth. Appl. Mech. Eng., vol. 344, pp. 13–33, 2019. DOI: 10.1016/j.cma.2018.10.003.
  • K. Song, Y. Zhang, X. Zhuang, X. Yu, and B. Song, An adaptive failure boundary approximation method for reliability analysis and its applications, Eng. Comput., vol. 37, no. 3, pp. 2457–2472, 2021. DOI: 10.1007/s00366-020-01011-0.
  • X. Yang, X. Cheng, T. Wang, and C. Mi, System reliability analysis with small failure probability based on active learning Kriging model and multimodal adaptive importance sampling, Struct. Multidisc. Optim., vol. 62, no. 2, pp. 581–596, 2020. DOI: 10.1007/s00158-020-02515-5.
  • X. Huang, Y. Li, Y. Zhang, and X. Zhang, A new direct second-order reliability analysis method, Appl. Math. Model., vol. 55, pp. 68–80, 2018. DOI: 10.1016/j.apm.2017.10.026.
  • S. P. Zhu, B. Keshtegar, S. Chakraborty, and N. Trung, Novel probabilistic model for searching most probable point in structural reliability analysis, Comput. Meth. Appl. Mech. Eng., vol. 366, p. 113027, 2020. DOI: 10.1016/j.cma.2020.113027.
  • A. Hasofer and N. Lind, Exact and invariant second-moment code format, J. Engrg. Mech. Div., vol. 100, no. 1, pp. 111–121, 1974. DOI: 10.1061/JMCEA3.0001848.
  • P. Liu and A. Der Kiureghian, Optimization algorithms for structural reliability, Struct. Saf., vol. 9, no. 3, pp. 161–177, 1991. DOI: 10.1016/0167-4730(91)90041-7.
  • T. Farshi, A memetic animal migration optimizer for multimodal optimization, Evol. Syst., 2021. DOI: 10.1007/s12530-021-09368-3.
  • X. Li, J. Zhang, and M. Yin, Animal migration optimization: An optimization algorithm inspired by animal migration behavior, Neural Comput. Appl., vol. 24, no. 7–8, pp. 1867–1877, 2014. DOI: 10.1007/s00521-013-1433-8.
  • A. Mathai and S. Provost, Quadratic Forms in Random Variables: Theory and Applications, Marcel Dekker, New York, 1992.
  • R. Butler, Saddlepoint Approximations with Applications, Cambridge University Press, New York, 2007.
  • X. Du and A. Sudjianto, First-order saddlepoint approximation for reliability analysis, AIAA J., vol. 42, no. 6, pp. 1199–1207, 2004. DOI: 10.2514/1.3877.
  • X. Huang and Y. Zhang, Reliability–sensitivity analysis using dimension reduction methods and saddlepoint approximations, Int. J. Numer. Meth. Eng., vol. 93, no. 8, pp. 857–886, 2013. DOI: 10.1002/nme.4412.
  • P. Wei, F. Liu, and C. Tang, Reliability and reliability-based importance analysis of structural systems using multiple response Gaussian process model, Reliab. Eng. Syst. Saf., vol. 175, pp. 183–195, 2018. DOI: 10.1016/j.ress.2018.03.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.