317
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Intelligent monitoring of tunnel structures based on vision measurement technologies

, & ORCID Icon
Pages 5906-5910 | Received 07 Jul 2021, Accepted 11 Aug 2021, Published online: 19 Sep 2021

References

  • R. S. Adhikari, O. Moselhi1, and A. Bagchi, Image-based retrieval of concrete crack properties for bridge inspection, Autom. Constr., vol. 39, pp. 180–194, 2014.
  • S. Ganapuram, M. Adams, and A. Patnaik, Quantification of Cracks in Concrete Bridge Decks in Ohio District 3, The University of Akron, Akron, American, 2012.
  • D. S. Kang, H. M. Lee, H. S. Park, and I. Lee, computing method for estimating strain and stress of steel beams using terrestrial laser scanning and FEM, Kem., vol. 347, pp. 517–522, 2007. DOI: 10.4028/www.scientific.net/KEM.347.517.
  • H. Yang, X. Xu, B. Kargoll, and I. Neumann, An automatic and intelligent optimal surface modeling method for composite tunnel structures, Compos. Struct., vol. 208, pp. 702–710, 2019. DOI: 10.1016/j.compstruct.2018.09.082.
  • X. Xu, B. Kargoll, J. Bureick, H. Yang, H. Alkhatib, and I. Neumann, TLS-based profile model analysis of major composite structures with robust B-spline method, Compos. Struct., vol. 184, pp. 814–820, 2018. DOI: 10.1016/j.compstruct.2017.10.057.
  • H. Yang, M. Omidalizarandi, X. Xu, and I. Neumann, Terrestrial laser scanning technology for deformation monitoring and surface modeling of arch structures, Compos. Struct., vol. 169, pp. 173–179, 2017. DOI: 10.1016/j.compstruct.2016.10.095.
  • X. Xu, X. Zhao, H. Yang, and I. Neumann, TLS-based feature extraction and 3D modeling for arch structures, J. Sens., 2017. Article ID 9124254, 2017.
  • H. Yang, X. Xu, and I. Neumann, Optimal finite element model with response surface methodology for concrete structures based on Terrestrial Laser Scanning technology, Compos. Struct.., vol. 183, pp. 2–6, 2018. DOI: 10.1016/j.compstruct.2016.11.012.
  • X. Xu, H. Yang, Y. Zhang, and I. Neumann, Intelligent 3D data extraction method for deformation analysis of composite structures, Compos. Struct., vol. 203, pp. 254–258, 2018. DOI: 10.1016/j.compstruct.2018.07.003.
  • D. Foti, Dynamic identification techniques to numerically detect the structural damage, Open Constr Build Technol J., vol. 7, no. 1, pp. 43–50, 2013. DOI: 10.2174/1874836801307010043.
  • B. Asallah, I. Amirhosein, and A. Farhad, A simple quantitative approach for post-earthquake damageassessment of flexure dominant reinforced concrete bridges, Eng. Struct., vol. 33, no. 12, pp. 3218–3225, 2011.
  • T. Kobayashi. Spiral-net with F1-based optimization for image-based crack detection, Asian Conference on Computer Vision, pp. 88–104. December. Springer, Cham, 2018.
  • H. Yang, X. Xu, and I. Neumann, Laser scanning-based updating of a finite-element model for structural health monitoring, IEEE Sensors J., vol. 16, no. 7, pp. 2100–2104, 2016. DOI: 10.1109/JSEN.2015.2508965.
  • X. Xu, J. Bureick, H. Yang, and I. Neumann, TLS-based composite structure deformation analysis validated with laser tracker, Compos. Struct., vol. 202, pp. 60–65, 2018. DOI: 10.1016/j.compstruct.2017.10.015.
  • H. Yang, and X. Xu, Multi-sensor technology for B-spline modelling and deformation analysis of composite structures, Compos. Struct., vol. 224, pp. 111000, 2019. DOI: 10.1016/j.compstruct.2019.111000.
  • H. Yang, X. Xu, and I. Neumann, Deformation behavior analysis of composite structures under monotonic loads based on terrestrial laser scanning technology, Compos. Struct., vol. 183, pp. 594–599, 2018. DOI: 10.1016/j.compstruct.2017.07.011.
  • H. Yang, X. Xu, W. Xu, and I. Neumann, Terrestrial laser scanning-based deformation analysis for arch and beam structures, IEEE Sensors J., vol. 17, pp. 4605–4611, 2017.
  • H. S. Park, H. M. Lee, H. Adeli, and I. Lee, A new approach for health monitoring of structures: Terrestrial laser scanning, Computer-Aided Civil Eng., vol. 22, no. 1, pp. 19–30, 2007. DOI: 10.1111/j.1467-8667.2006.00466.x.
  • C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), Springer-Verlag New York, Secaucus, NJ, 2006.
  • P. Mishra, K. Khurana, S. Gupta, and M. K. Sharma. VMAnalyzer: malware semantic analysis using integrated CNN and bi-directional LSTM for detecting VM-level attacks in cloud, In 2019 Twelfth International Conference on Contemporary Computing (IC3), pp. 1–6. August. IEEE, 2019.
  • R. Basnet, M. T. Islam, T. Howlader, S. M. Rahman, and D. Hatzinakos, Estimation of affective dimensions using CNN-based features of audiovisual data, Pattern Recog. Lett., vol. 128, pp. 290–297, 2019. DOI: 10.1016/j.patrec.2019.09.015.
  • T. Sattler, Q. Zhou, M. Pollefeys, and L. Leal-Taixe. Understanding the limitations of CNN-based absolute camera pose regression, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, pp. 3302–3312, 2019.
  • A. Ullah, K. Muhammad, I. U. Haq, and S. W. Baik, Action recognition using optimized deep autoencoder and CNN for surveillance data streams of non-stationary environments, Future Gener. Comput. Syst., vol. 96, pp. 386–397, 2019. DOI: 10.1016/j.future.2019.01.029.
  • X. Xu, and H. Yang, Vision measurement of tunnel structures with robust modelling and deep learning algorithms, Sensors., vol. 20, no. 17, pp. 4945, 2020. DOI: 10.3390/s20174945.
  • L. Dahmani, A. Khennane, and S. Kac, Crack identification in reinforced concrete beam using ANSYS software, Strength Mater., vol. 42, no. 2, pp. 219–232, 2010. DOI: 10.1007/s11223-010-9212-6.
  • M. M. Hossain, M. R. Karim, and M. A. Islam, Crack chronology of reinforced concrete beam under impact loading, Middle-East J Sci Res., vol. 21, no. 9, pp. 1663–1669, 2014.
  • F. Dubois, R. Moutou-Pitti, B. Picoux, and C. Petit, Finite element model for crack growth process in concrete bituminous, Adv. Eng. Softw., vol. 44, no. 1, pp. 35–143, 2012. DOI: 10.1016/j.advengsoft.2011.05.039.
  • H. G. Kwak, and C. Filippou, Finite Element Analysis of Reinforced Concrete Structures under Monotonic Loads, Department of Civil Engineering, University of California, California, November, pp. 36–52, 1990.
  • L. N. Adeghe, and M. P. Collins, A Finite Element Model for Studying Reinforced Concrete Detailing Problems, Department of Civil Engineering, University of Toronto, Toronto, pp. 112–135, 1986.
  • V. Colotti, and G. Spadea, An analytical model for crack control in reinforced concrete elements under combined forces, Cem. Concr. Compos., vol. 27, no. 4, pp. 503–514, 2005. DOI: 10.1016/j.cemconcomp.2004.09.002.
  • U. Banerjee, and J. Osborn, Generalized finite element methods: Main ideas, results, and perspective, Int. J. Comput. Methods., vol. 1, no. 1., pp. 67–103, 2004.
  • H. Yang, X. Xu, and I. Neumann, The benefit of 3D laser scanning technology in the generation and calibration of FEM models for health assessment of concrete structures, Sensors (Basel)., vol. 14, no. 11, pp. 21889–21904, 2014. DOI: 10.3390/s141121889.
  • K. J. William, and E. P. Warnke, Constitutive model for the triaxial behavior of concrete, Proceedings of the International Association for Bridge and Structural Engineering, pp. 173–175, Vol. 19, Bergamo, Italy, 1975.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.