124
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Mechanical buckling analysis of thick FGM toroidal shell segments with porosities using Reddy’s higher order shear deformation theory

&
Pages 5923-5932 | Received 09 May 2021, Accepted 14 Aug 2021, Published online: 24 Aug 2021

References

  • H. S. Shen, Postbuckling analysis of axially-loaded functionally graded cylindrical shells in thermal environments, Compos. Sci. Technol., vol. 62, no. 7–8, pp. 977–987, 2002. DOI: 10.1016/S0266-3538(02)00029-5.
  • H. S. Shen, Postbuckling analysis of pressure-loaded functionally graded cylindrical shells in thermal environments, Eng. Struct., vol. 25, no. 4, pp. 487–497, 2003. DOI: 10.1016/S0141-0296(02)00191-8.
  • H. S. Shen, Postbuckling of shear deformable FGM cylindrical shells surrounded by an elastic medium, Int. J. Mech. Sci., vol. 51, no. 5, pp. 372–383, 2009. DOI: 10.1016/j.ijmecsci.2009.03.006.
  • H. S. Shen and N. Noda, Postbuckling of pressure-loaded FGM hybrid cylindrical shells in thermal environment, Compos. Struct., vol. 77, no. 4, pp. 546–560, 2007. DOI: 10.1016/j.compstruct.2005.08.006.
  • H. S. Shen and N. Noda, Postbuckling of FGM cylindrical shells under combined axial and radial mechanical loads in thermal environments, Int. J. Solids Struct., vol. 42, no. 16–17, pp. 4641–4662, 2005. DOI: 10.1016/j.ijsolstr.2005.02.005.
  • E. Bagherizadeh, Y. Kiani, and M. R. Eslami, Mechanical buckling of functionally graded material cylindrical shells surrounded by Pasternak elastic foundation, Compos. Struct., vol. 93, no. 11, pp. 3063–3071, 2011. DOI: 10.1016/j.compstruct.2011.04.022.
  • S. R. Li and R. C. Batra, Buckling of axially compressed thin cylindrical shells with functionally graded middle layer, Thin-Walled Struct., vol. 44, no. 10, pp. 1039–1047, 2006. DOI: 10.1016/j.tws.2006.10.006.
  • S. Trabelsi, A. Frikha, S. Zghal, and F. Dammak, Thermal post-buckling analysis of functionally graded material structures using a modified FSDT, Int. J. Mech. Sci., vol. 144, pp. 74–89, 2018. DOI: 10.1016/j.ijmecsci.2018.05.033.
  • F. Allahkarami, S. Satouri, and M. M. Najafizadeh, Mechanical buckling of two-dimensional functionally graded cylindrical shells surrounded by Winkler-Pasternak elastic foundation, Mech. Adv. Mater. Struct., vol. 23, no. 8, pp. 873–887, 2016. DOI: 10.1080/15376494.2015.1036181.
  • A. H. Sofiyev and D. Hui, On the vibration and stability of FGM cylindrical shells under external pressures with mixed boundary conditions by using FOSDT, Thin-Walled Struct., vol. 134, pp. 419–427, 2019. DOI: 10.1016/j.tws.2018.10.018.
  • H. V. Tung, Postbuckling of functionally graded cylindrical shells with tangential edge restraints and temperature-dependent properties, Acta Mech., vol. 225, no. 6, pp. 1795–1808, 2014. DOI: 10.1007/s00707-013-1011-2.
  • D. H. Bich, D. V. Dung, V. H. Nam, and N. T. Phuong, Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical shells under axial compression, Int. J. Mech. Sci., vol. 74, pp. 190–200, 2013. DOI: 10.1016/j.ijmecsci.2013.06.002.
  • H. Huang and Q. Han, Research on nonlinear postbuckling of functionally graded cylindrical shells under radial loads, Compos. Struct., vol. 92, no. 6, pp. 1352–1357, 2010. DOI: 10.1016/j.compstruct.2009.11.016.
  • H. Huang and Q. Han, Nonlinear buckling and postbuckling of heated functionally graded cylindrical shells under combined axial compression and radial pressure, Int. J. Non-Linear Mech., vol. 44, no. 2, pp. 209–218, 2009. DOI: 10.1016/j.ijnonlinmec.2008.11.016.
  • D. V. Dung and L. K. Hoa, Nonlinear buckling and post-buckling analysis of eccentrically stiffened functionally graded circular cylindrical shells under external pressure, Thin-Walled Struct., vol. 63, pp. 117–124, 2013. DOI: 10.1016/j.tws.2012.09.010.
  • D. V. Dung and V. H. Nam, Nonlinear dynamic analysis of eccentrically stiffened functionally graded circular cylindrical thin shells under external pressure and surrounded by an elastic medium, Eur. J. Mech. A/Solids, vol. 46, pp. 42–53, 2014. DOI: 10.1016/j.euromechsol.2014.02.008.
  • J. Sun, X. Xu, and C. W. Lim, Buckling of functionally graded cylindrical shells under combined thermal and compressive loads, J. Therm. Stresses, vol. 37, no. 3, pp. 340–362, 2014. DOI: 10.1080/01495739.2013.869143.
  • H. Huang, Q. Han, N. Feng, and X. Fan, Buckling of functionally graded cylindrical shells under combined loads, Mech. Adv. Mater. Struct., vol. 18, no. 5, pp. 337–346, 2011. DOI: 10.1080/15376494.2010.516882.
  • R. Kandasamy, R. Dimitri, and F. Tornabene, Numerical study on the free vibration and thermal buckling behavior of moderately thick functionally graded structures in thermal environments, Compos. Struct., vol. 157, pp. 207–221, 2016. DOI: 10.1016/j.compstruct.2016.08.037.
  • S. Trabelsi, A. Frikha, S. Zghal, and F. Dammak, A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells, Eng. Struct., vol. 178, pp. 444–459, 2019. DOI: 10.1016/j.engstruct.2018.10.047.
  • R. Shahsiah and M. R. Eslami, Thermal buckling of functionally graded cylindrical shell, J. Therm. Stresses, vol. 26, no. 3, pp. 277–294, 2003. DOI: 10.1080/713855892.
  • L. Wu, Z. Jiang, and J. Liu, Thermoelastic stability of functionally graded cylindrical shells, Compos. Struct., vol. 70, no. 1, pp. 60–68, 2005. DOI: 10.1016/j.compstruct.2004.08.012.
  • D. O. Brush and B. O. Almroth, Buckling of Bars, Plates and Shells, McGraw-Hill, New York, 1975.
  • J. W. Hutchinson, Initial postbuckling of toroidal shell segments, Int. J. Solids Struct., vol. 3, no. 1, pp. 97–115, 1967. DOI: 10.1016/0020-7683(67)90046-7.
  • P. A. Cooper, Buckling of nearly cylindrical shells under lateral pressure, AIAA J., vol. 10, no. 2, pp. 232–234, 1972. DOI: 10.2514/3.6567.
  • D. H. Bich and D. G. Ninh, Post-buckling of sigmoid-functionally graded material toroidal shell segment surrounded by an elastic foundation under thermo-mechanical loads, Compos. Struct., vol. 138, no. 15, pp. 253–263, 2016. DOI: 10.1016/j.compstruct.2015.11.044.
  • D. X. Hung, T. M. Tu, N. V. Long, and P. H. Anh, Nonlinear buckling and postbuckling of FG porous variable thickness toroidal shell segments surrounded by elastic foundation subjected to compressive loads, Aerosp. Sci. Technol., vol. 107, pp. 106253, 2020. DOI: 10.1016/j.ast.2020.106253.
  • P. T. Hieu and H. V. Tung, Thermomechanical nonlinear buckling of pressure-loaded carbon nanotube reinforced composite toroidal shell segment surrounded by an elastic medium with tangentially restrained edges, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., vol. 233, no. 9, pp. 3193–3207, 2019.
  • P. T. Hieu and H. V. Tung, Thermal and thermomechanical buckling of shear deformable FG-CNTRC cylindrical shells and toroidal shell segments with tangentially restrained edges, Arch. Appl. Mech., vol. 90, no. 7, pp. 1529–1546, 2020. DOI: 10.1007/s00419-020-01682-7.
  • P. T. Hieu and H. V. Tung, Buckling of shear deformable FG-CNTRC cylindrical shells and toroidal shell segments under mechanical loads in thermal environments, ZAMM, vol. 100, no. 11, pp. e201900243, 2020.
  • V. T. Long and H. V. Tung, Thermal nonlinear buckling of shear deformable functionally graded cylindrical shells with porosities, AIAA J., vol. 59, no. 6, pp. 2233–2241, 2021. DOI: 10.2514/1.J060026.
  • V. T. Long and H. V. Tung, Thermomechanical nonlinear buckling of pressurized shear deformable FGM cylindrical shells including porosities and elastically restrained edges, J. Aerosp. Eng., vol. 34, no. 3, pp. 04021011, 2021. DOI: 10.1061/(ASCE)AS.1943-5525.0001252.
  • N. Wattanasakulpong and V. Ungbhakorn, Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities, Aerosp. Sci. Technol., vol. 32, no. 1, pp. 111–120, 2014. DOI: 10.1016/j.ast.2013.12.002.
  • J. N. Reddy and C. F. Liu, A higher-order shear deformation theory of laminated elastic shells, Int. J. Eng. Sci., vol. 23, no. 3, pp. 319–330, 1985. DOI: 10.1016/0020-7225(85)90051-5.
  • H. V. Tung and N. D. Duc, Nonlinear response of shear deformable FGM curved panels resting on elastic foundations and subjected to mechanical and thermal loading conditions, Appl. Math. Modell., vol. 38, no. 11–12, pp. 2848–2866, 2014. DOI: 10.1016/j.apm.2013.11.015.
  • N. D. Duc and H. V. Tung, Mechanical and thermal postbuckling of higher order shear deformable functionally graded plates on elastic foundations, Compos. Struct., vol. 93, no. 11, pp. 2874–2881, 2011. DOI: 10.1016/j.compstruct.2011.05.017.
  • Y. S. Touloukian, Thermophysical Properties of High Temperature Solid Materials, MacMillan, New York, 1967.
  • J. N. Reddy and C. D. Chin, Thermomechanical analysis of functionally graded cylinders and plates, J. Therm. Stresses, vol. 21, no. 6, pp. 593–626, 1998. DOI: 10.1080/01495739808956165.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.