913
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Molecular dynamics simulation of atomic diffusion in friction stir spot welded Al to Cu joints

, , , &
Pages 6053-6059 | Received 07 Aug 2021, Accepted 19 Aug 2021, Published online: 24 Sep 2021

Reference

  • X.W. Yang, T. Fu, and W.Y. Li, Friction stir spot welding: A review on joint macro- and microstructure, property, and process modelling, Adv. Mater. Sci. Eng., vol. 2014, pp. 1–11, 2014. DOI: 10.1155/2014/697170.
  • Y. Bozkurt, S. Salman, and G. Çam, Effect of welding parameters on lap shear tensile properties of dissimilar friction stir spot welded aa 5754-h22/2024-t3 joints, Sci. Technol. Weld. Join., vol. 18, no. 4, pp. 337–345, 2013. DOI: 10.1179/1362171813Y.0000000111.
  • G. İpekoğlu and G. Çam, Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and AA6061 aluminum alloys, Metall. Mater. Trans. A., vol. 45, no. 7, pp. 3074–3087, 2014. DOI: 10.1007/s11661-014-2248-7.
  • G. Çam, Friction stir welded structural materials: Beyond Al-alloys, Int. Mater. Rev., vol. 56, no. 1, pp. 1–48, 2011. DOI: 10.1179/095066010X12777205875750.
  • G. Çam and G. İpekoğlu, Recent developments in joining of aluminum alloys, Int. J. Adv. Manuf. Technol., vol. 91, no. 5-8, pp. 1851–1866, 2017. DOI: 10.1007/s00170-016-9861-0.
  • N. Kashaev, V. Ventzke, and G. Çam, Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications, J. Manuf. Process., vol. 36, pp. 571–600, 2018. DOI: 10.1016/j.jmapro.2018.10.005.
  • A. Heidarzadeh, et al., Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution, Prog. Mater. Sci., vol. 117, pp. 100752, 2020. DOI: 10.1016/j.pmatsci.2020.100752.
  • G. Cam, G. Ipekoglu, and H. Tarik Serindag, Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints, Sci. Technol. Weld. Join., vol. 19, pp. 715–720, 2014.
  • O. Mypati, D. Mishra, S. Sahu, S.K. Pal, and P. Srirangam, A study on electrical and electrochemical characteristics of friction stir welded lithium-ion battery tabs for electric vehicles, J. Electron. Mater., Vol. 72, pp. 72–87, 2020. DOI: 10.1007/s11664-019-07711-8.
  • A. Das, L. Dezhi, W. David, and G. David, Joining technologies for automotive battery systems manufacturing, World Electr. Veh. J., vol. 9, pp. 1–13, 2018.
  • A. Das, D. Li, D. Williams, and D. Greenwood, Weldability and shear strength feasibility study for automotive electric vehicle battery tab interconnects, J. Brazilian Soc. Mech. Sci. Eng., vol. 41, pp. 1–14, 2019.
  • A. Paul, T. Laurila, V. Vuorinen, and S.V. Divinski, Short-circuit diffusion. In Thermodynamics, Diffusion and the Kirkendall Effect in Solids, Springer International Publishing, pp. 429–491, 2014. DOI: 10.1007/978-3-319-07461-0_10.
  • R.P. Mahto, et al., Interfacial microstructural and corrosion characterizations of friction stir welded AA6061-T6 and AISI304 materials, Met. Mater. Int., vol. 25, no. 3, pp. 752–767, 2019. DOI: 10.1007/s140-018-00222-x.
  • O. Mypati, A. Sadhu, S. Sahu, and D. Mishra, Enhancement of joint strength in friction stir lap welding between AA6061 and AISI 304 by adding diffusive coating agents, Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf., vol. 234, no. 1-2, pp. 204–217, 2019. DOI: 10.1177/0954405419838379.
  • A. Mao, et al., The diffusion behaviors at the Cu-Al solid-liquid interface: A molecular dynamics study, Resul. Phys., vol. 16, pp. 102998, 2020. DOI: 10.1016/j.rinp.2020.102998
  • Binqing Sun, Lixin Lu, and Y. Z, Molecular dynamics simulation on the diffusion of flavor, O2 and H2O molecules in LDPE film, Materials, vol. 12, pp. 3515, 2019.
  • J. Yang, J. Zhang, and J. Qiao, Molecular dynamics simulations of atomic diffusion during the Al-Cu ultrasonic welding process, Materials (Basel)., vol. 12, pp. 2306, 2019. DOI: 10.3390/ma12142306.
  • F.C. Liu and P. Dong, From thick intermetallic to nanoscale amorphous phase at Al-Fe joint interface: roles of friction stir welding conditions, Scr. Mater., vol. 191, pp. 167–172, 2021. DOI: 10.1016/j.scriptamat.2020.09.031.
  • F.C. Liu, et al., Alloy amorphization through nanoscale shear localization at Al-Fe interface, Mater. Today Phys., vol. 15, pp. 100252, 2020.
  • R. Jain and S.K. Pal, Investigation on effect of pin shapes on temperature, material flow and forces during friction stir welding: A simulation study, vol. 233, pp. 1993–2006, 2019.
  • M.P. Iqbal, R. Jain, and S.K. Pal, Numerical and experimental study on friction stir welding of aluminum alloy pipe, J. Mater. Process. Technol., vol. 274, pp. 116258, 2019. DOI: 10.1016/j.jmatprotec.2019.116258.
  • R. Jain, S.K. Pal, and S.B. Singh, Finite element simulation of pin shape influence on material flow, forces in friction stir welding, Int. J. Adv. Manuf. Technol., vol. 94, no. 5-8, pp. 1781–1797, 2018. DOI: 10.1007/s00170-017-0215-3.
  • M.P. Iqbal, et al., Numerical modelling of microstructure in friction stir welding of aluminium alloys, Int. J. Mech. Sci., vol. 185, pp. 105882, 2020.
  • T. Sheppard and A. Jackson, Constitutive equations for use in prediction of flow stress during extrusion of aluminium alloys, Mater. Sci. Technol., vol. 13, no. 3, pp. 203–209, 1997. DOI: 10.1179/mst.1997.13.3.203.
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., vol. 117, no. 1, pp. 1–19, 1995. DOI: 10.1006/jcph.1995.1039.
  • J. Cai and Y. Ye, Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys, Phys. Rev. B Condens. Matter., vol. 54, no. 12, pp. 8398–8410, 1996. DOI: 10.1103/physrevb.54.8398.
  • X. Liu, Y. Sun, T. Nagira, K. Ushioda, and H. Fujii, Effect of stacking fault energy on the grain structure evolution of FCC metals during friction stir welding, Acta Metall. Sin. (Engl. Lett.)., vol. 33, no. 7, pp. 1001–1012, 2020. DOI: 10.1007/s40195-020-01064-6.
  • J. Gao, et al., Super plasticity in a cold-welded Al-Cu joint, Appl. Phys. Lett., vol. 114, no. 6, pp. 063101, 2019. DOI: 10.1063/1.5084134.
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool, Model. Simul. Mater. Sci. Eng., vol. 18, pp. 015012, 2009.
  • S. Soltani, N. Abdolrahim, and P. Sepehrband, Molecular dynamics study of self-diffusion in the core of a screw dislocation in face centered cubic crystals, Scr. Mater., vol. 133, pp. 101–104, 2017. DOI: 10.1016/j.scriptamat.2017.02.021.
  • A. Atkinson, Wagner theory and short circuit diffusion, Mater. Sci. Technol. (United Kingdom)., vol. 4, no. 12, pp. 1046–1051, 1988. DOI: 10.1179/mst.1988.4.12.1046.
  • J.L. Murray, The aluminium-copper system, Int. Met. Rev., vol. 30, no. 1, pp. 211–233, 1985. DOI: 10.1179/imr.1985.30.1.211.
  • E.E. Havinga, Compounds and pseudo-binary alloys with the CuAl2 (C16)-type structure II. Theoretical discussion of crystallographic parameters, J. Less Common Met., vol. 27, no. 2, pp. 187–193, 1972. DOI: 10.1016/0022-5088(72)90029-X.
  • V.G. Ouvarov-Bancalero, Study of Copper-Rich Intermetallic Phase Formation in Copper-Aluminum Binary System, Univ. of Texas. Arligton, USA, 2018.
  • M.P. Allen, and D.J. Tildesley, Computer Simulation of Liquids, Oxford University Press, United Kingdom, 2017.
  • R.W. Hockney, Potential calculation and some applications, Methods Comput. Phys., vol. 9, pp. 135–211, 1970.
  • D.A. Porter, K.E. Easterling, and M.Y. Sherif, Phase Transformations in Metals and Alloys, 3rd ed., CRC Press, USA, 2009.
  • N. Prud’homme, T. Duguet, D. Samélor, F. Senocq, and C. Vahlas, Surface-driven, one-step chemical vapor deposition of γ-Al4Cu9 complex metallic alloy film, Appl. Surf. Sci., vol. 283, pp. 788–793, 2013. DOI: 10.1016/j.apsusc.2013.07.019.
  • J.M. Dubois, Properties- and applications of quasicrystals and complex metallic alloys, Chem. Soc. Rev., vol. 41, no. 20, pp. 6760–6777, 2012. DOI: 10.1039/c2cs35110b.
  • S. Kumar, S.K. Pattanayek, and S.K. Das, Reactivity-controlled aggregation of graphene nanoflakes in aluminum matrix: atomistic molecular dynamics simulation, J. Phys. Chem. C., vol. 123, no. 29, pp. 18017–18027, 2019. DOI: 10.1021/acs.jpcc.9b03101.
  • N. Pant, N. Verma, Y. Ashkenazy, P. Bellon, and R.S. Averback, Phase evolution in two-phase alloys during severe plastic deformation, Acta Mater., vol. 210, pp. 116826, 2021. DOI: 10.1016/j.actamat.2021.116826.
  • U. Dahmen, Orientation relationships in precipitation systems, Acta Metall., vol. 30, no. 1, pp. 63–73, 1982. DOI: 10.1016/0001-6160(82)90045-1.
  • H.J. Bunge, et al., Orientation relationship of Widmannstätten plates in an iron meteorite measured with high-energy synchrotron radiation, J. Appl. Crystallogr., vol. 36, no. 1, pp. 137–140, 2003. DOI: 10.1107/S0021889802021386.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.