360
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and numerical implementation of auxetic substrate for enhancing voltage of piezoelectric sandwich beam harvester

, &
Pages 6107-6117 | Received 19 Jul 2021, Accepted 21 Aug 2021, Published online: 23 Sep 2021

References

  • C. Wei and X. Jing, A comprehensive review on vibration energy harvesting: modelling and realization, Renew. Sustain. Energy Rev., vol. 74, pp. 1–18, 2017. DOI: 10.1016/j.rser.2017.01.073.
  • M.Q. Le et al., Review on energy harvesting for structural health monitoring in aeronautical applications, Prog. Aerosp. Sci., vol. 79, pp. 147–157, 2015. DOI: 10.1016/j.paerosci.2015.10.001.
  • V.C. Nagesh, Wheel Flat Monitoring on Freight Trains with Wireless Energy Autonomous Sensor Networks, Technische Universität Darmstadt, 2014.
  • M. Hong et al., In situ health monitoring for bogie systems of CRH380 train on Beijing–Shanghai high-speed railway, Mech. Syst. Sig. Process., vol. 45, no. 2, pp. 378–395, 2014. DOI: 10.1016/j.ymssp.2013.11.017.
  • S. Priya and D.J. Inman, Energy, Harvesting Technologies, Vol. 21, Springer, New York, 2009.
  • T. Ikeda, Fundamentals of Piezoelectricity, Oxford University Press, Oxford, 1996.
  • K. Yoshimizu et al., Strategy for enhancing the active harvesting of piezoelectric energy, J. Intell. Mater. Syst. Struct., vol. 28, no. 8, pp. 1059–1070, 2017. DOI: 10.1177/1045389X16672592.
  • S. Mishra et al., Advances in piezoelectric polymer composites for energy harvesting applications: a systematic review, Macromol. Mater. Eng., vol. 304, no. 1, pp. 1800463, 2019. DOI: 10.1002/mame.201800463.
  • Q.-L. Zhao et al., Flexible semitransparent energy harvester with high pressure sensitivity and power density based on laterally aligned PZT single-crystal nanowires, ACS Appl. Mater. Interfaces, vol. 9, no. 29, pp. 24696–24703, 2017. DOI: 10.1021/acsami.7b03929.
  • D. Guyomar et al., Toward energy harvesting using active materials and conversion improvement by nonlinear processing, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, no. 4, pp. 584–595, 2005. DOI: 10.1109/tuffc.2005.1428041.
  • M. Lallart, Y.-C. Wu, and D. Guyomar, Switching delay effects on nonlinear piezoelectric energy harvesting techniques, IEEE Trans. Ind. Electron ., vol. 59, no. 1, pp. 464–472, 2012. DOI: 10.1109/TIE.2011.2148675.
  • H. Shen et al., Adaptive synchronized switch harvesting: a new piezoelectric energy harvesting scheme for wideband vibrations, Sens. Actuators, A Phys., vol. 226, pp. 21–36, 2015. DOI: 10.1016/j.sna.2015.02.008.
  • K. Makihara et al., A novel controller to increase harvested energy from negating vibration–suppression effect, Smart Mater. Struct., vol. 24, no. 3, pp. 037005, 2015. DOI: 10.1088/0964-1726/24/3/037005.
  • W. Liu et al., A comprehensive analysis and modeling of the self-powered synchronous switching harvesting circuit with electronic breakers, IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 3899–3909, 2018. DOI: 10.1109/TIE.2017.2762640.
  • A. Erturk and D.J. Inman, Piezoelectric Energy Harvesting, John Wiley & Sons, New York, 2011.
  • S.M.K. Tabatabaei, S. Behbahani, and P. Rajaeipour, Multi-objective shape design optimization of piezoelectric energy harvester using artificial immune system, Microsyst. Technol., vol. 22, no. 10, pp. 2435–2446, 2016. DOI: 10.1007/s00542-015-2605-5.
  • D. Fu, W. Wang, and L. Dong, Analysis on the fatigue cracks in the bogie frame, Eng. Fail. Anal., vol. 58, pp. 307–319, 2015. DOI: 10.1016/j.engfailanal.2015.09.004.
  • D.F. Berdy et al., Low-frequency meandering piezoelectric vibration energy harvester, IEEETrans. Ultrason. Ferroelectr. Freq. Control, vol. 59, no. 5, pp. 846–858, 2012. DOI: 10.1109/TUFFC.2012.2269.
  • R. Hosseini and M. Hamedi, Improvements in energy harvesting capabilities by using different shapes of piezoelectric bimorphs, J. Micromech. Microeng., vol. 25, no. 12, pp. 125008, 2015. DOI: 10.1088/0960-1317/25/12/125008.
  • S. Paquin and Y. St-Amant, Improving the performance of a piezoelectric energy harvester using a variable thickness beam, Smart Mater. Struct., vol. 19, no. 10, pp. 105020, 2010. DOI: 10.1088/0964-1726/19/10/105020.
  • S.S. Raju et al., An effective energy harvesting in low frequency using a piezo-patch cantilever beam with tapered rectangular cavities, Sens. Actuators, A Phys., vol. 297, pp. 111522, 2019.
  • N. Chandrasekharan and L.L. Thompson, Increased power to weight ratio of piezoelectric energy harvesters through integration of cellular honeycomb structures, Smart Mater. Struct., vol. 25, no. 4, pp. 045019, 2016. DOI: 10.1088/0964-1726/25/4/045019.
  • A. Meitzler et al., IEEE standard on piezoelectricity. Society, 1988.
  • F. Beer et al., Mechanics of Materials, McGraw-Hill, USA, 2014.
  • T. Fey et al., Mechanical and electrical strain response of a piezoelectric auxetic PZT lattice structure, Smart Mater. Struct., vol. 25, no. 1, pp. 015017, 2016. DOI: 10.1088/0964-1726/25/1/015017.
  • Q. Li, Y. Kuang, and M. Zhu, Auxetic piezoelectric energy harvesters for increased electric power output, AIP Adv., vol. 7, no. 1, pp. 015104, 2017. DOI: 10.1063/1.4974310.
  • W.J.G. Ferguson et al., Auxetic structure for increased power output of strain vibration energy harvester, Sens. Actuators, A Phys., vol. 282, pp. 90–96, 2018. DOI: 10.1016/j.sna.2018.09.019.
  • X. Zhu et al., Vibration frequencies and energies of an auxetic honeycomb sandwich plate, Mech. Adv. Mater. Struct., vol. 26, no. 23, pp. 1951–1957, 2019. DOI: 10.1080/15376494.2018.1455933.
  • Q. Li and D. Yang, Mechanical and acoustic performance of sandwich panels with hybrid cellular cores, J. Vib. Acoust., vol. 140, no. 6, 2018. DOI: 10.1115/1.4040514.
  • P. Eghbali, D. Younesian, and S. Farhangdoust, Enhancement of piezoelectric vibration energy harvesting with auxetic boosters, Int. J. Energy Res., vol. 44, no. 2, pp. 1179–1190, 2020. DOI: 10.1002/er.5010.
  • Material Properties. [cited 20 Oct 2020]. Available from https://support.piezo.com/article/62-material-properties.
  • A. Delnavaz and J. Voix, Flexible piezoelectric energy harvesting from jaw movements, Smart Mater. Struct., vol. 23, no. 10, pp. 105020, 2014. DOI: 10.1088/0964-1726/23/10/105020.
  • M. Karimi et al., Experimental and theoretical investigations on piezoelectric-based energy harvesting from bridge vibrations under travelling vehicles, Int. J. Mech. Sci., vol. 119, pp. 1–11, 2016. DOI: 10.1016/j.ijmecsci.2016.09.029.
  • J.N. Reddy, Theory and Analysis of Elastic Plates and Shells, CRC Press, New York, 2006.
  • F. Mokhtari et al., Modeling of electrospun PVDF/LiCl nanogenerator by the energy approach method: determining piezoelectric constant, J. Textile Instit., vol. 108, no. 11, pp. 1917–1925, 2017. DOI: 10.1080/00405000.2017.1300219.
  • CTS PZT Materials Complete Properties. [cited 21 Oct 2020]. Available from: https://s3.amazonaws.com/helpscout.net/docs/assets/5a60b15b0428635d7f439dde/attachments/5d6677b62c7d3a7a4d77c0e6/CTS_-PZT-Materials_Complete-Properties_20180829.pdf.
  • Young's Modulus – Tensile and Yield Strength for common Materials. [cited 20 Aug 2020]; Available from: https://www.engineeringtoolbox.com/young-modulus-d_417.html.
  • H. Özer and E. Erbayrak, Experimental investigation on the self-healing efficiency of araldite 2011 adhesive reinforced with thermoplastic microparticles. Adhesives: Applications and Properties, pp. 169, 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.