381
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Finite element analysis of smart composite plate structures coupled with piezoelectric materials: Investigation of static and vibration responses

ORCID Icon & ORCID Icon
Pages 6118-6143 | Received 18 Jun 2021, Accepted 21 Aug 2021, Published online: 22 Nov 2021

References

  • T. Bailey and J.E. Hubbard, Jr, Distributed piezoelectric-polymer active vibration control of a cantilever beam, J. Guid. Control Dyn., vol. 8, no. 5, pp. 605–611, 1985. DOI: 10.2514/3.20029.
  • E.F. Crawley and J. De Luis, Use of piezoelectric actuators as elements of intelligent structures, AIAA J., vol. 25, no. 10, pp. 1373–1385, 1987. DOI: 10.2514/3.9792.
  • A. Baz and S. Poh, Performance of an active control system with piezoelectric actuators, J. Sound Vib., vol. 126, no. 2, pp. 327–343, 1988. DOI: 10.1016/0022-460X(88)90245-3.
  • H.S. Tzou and C.I. Tseng, Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: a piezoelectric finite element approach, J. Sound Vib., vol. 138, no. 1, pp. 17–34, 1990. DOI: 10.1016/0022-460X(90)90701-Z.
  • P. Heyliger, Static behavior of laminated elastic/piezoelectric plates, AIAA J., vol. 32, no. 12, pp. 2481–2484, 1994. DOI: 10.2514/3.12321.
  • M.C. Ray, R. Bhattacharya, and B. Samanta, Exact solutions for dynamic analysis of composite plates with distributed piezoelectric layers, Comput. Struct., vol. 66, no. 6, pp. 737–743, 1998. DOI: 10.1016/S0045-7949(97)00126-0.
  • N. Mallik, and M.C. Ray, Exact solutions for the analysis of piezoelectric fiber reinforced composites as distributed actuators for smart composite plates, Int. J. Mech. Mater. Des., vol. 1, no. 4, pp. 347–364, 2004. DOI: 10.1007/s10999-005-0516-9.
  • M.C. Ray, and H.M. Sachade, Exact solutions for the functionally graded plates integrated with a layer of piezoelectric fiber-reinforced composite. J. Appl. Mech., vol. 73, no. 4, pp. 622–632, 2006.
  • S. Kapuria, and P. Kumari, Extended Kantorovich method for coupled piezoelasticity solution of piezolaminated plates showing edge effects. Proc. Royal Soc. A Math. Phys. Eng. Sci., vol. 469, no. 2151, pp. 20120565, 2013.
  • P. Kumari, and A. Singh, Three-dimensional analytical solution for FGM plate with varying material properties in in-plane directions using extended kantorovich method. In Recent Advances in Structural Engineering, Springer, Singapore, vol. 1, pp. 611–621, 2019.
  • S.S. Vel, and R.C. Batra, Three-dimensional analytical solution for hybrid multilayered piezoelectric plates, J. Appl. Mech., vol. 67, no. 3, pp. 558–567, 2000. DOI: 10.1115/1.1311274.
  • S. Sawarkar, S. Pendhari, and Y. Desai, Semi-analytical solutions for static analysis of piezoelectric laminates, Compos. Struct. ., vol. 153, pp. 242–252, 2016. DOI: 10.1016/j.compstruct.2016.05.106.
  • S. Sawarkar, S. Pendhari, Y. Desai, and T. Kant, Electro-elastic analysis of simply supported functionally graded, laminated and sandwich piezoelectric plates, Int. J. Comput. Methods Eng. Sci. Mech., vol. 21, no. 6, pp. 312–330, 2020. DOI: 10.1080/15502287.2020.1841333.
  • C. Willberg, and U. Gabbert, Development of a three-dimensional piezoelectric isogeometric finite element for smart structure applications, Acta Mech., vol. 223, no. 8, pp. 1837–1850, 2012. DOI: 10.1007/s00707-012-0644-x.
  • G. Akhras, and W.C. Li, Three-dimensional static, vibration and stability analysis of piezoelectric composite plates using a finite layer method, Smart Mater. Struct., vol. 16, no. 3, pp. 561–569, 2007. DOI: 10.1088/0964-1726/16/3/002.
  • J. Kim, V.V. Varadan, and V.K. Varadan, Finite element modelling of structures including piezoelectric active devices, Int. J. Numer. Meth. Engng., vol. 40, no. 5, pp. 817–832, 1997. DOI: 10.1002/(SICI)1097-0207(19970315)40:5<817::AID-NME90>3.0.CO;2-B.
  • J.N. Reddy, An evaluation of equivalent-single-layer and layerwise theories of composite laminates, Compos. Struct., vol. 25, no. 1-4, pp. 21–35, 1993. DOI: 10.1016/0263-8223(93)90147-I.
  • S. Abrate, and M. Di Sciuva, Equivalent single layer theories for composite and sandwich structures: a review, Compos. Struct., vol. 179, pp. 482–494, 2017. DOI: 10.1016/j.compstruct.2017.07.090.
  • E. Carrera, Historical review of zig-zag theories for multilayered plates and shells, Appl. Mech. Rev., vol. 56, no. 3, pp. 287–308, 2003. DOI: 10.1115/1.1557614.
  • A.S. Sayyad, and Y.M. Ghugal, Bending, buckling and free vibration of laminated composite and sandwich beams: a critical review of literature, Compos. Struct., vol. 171, pp. 486–504, 2017. DOI: 10.1016/j.compstruct.2017.03.053.
  • B.T. Wang, and C.A. Rogers, Laminate plate theory for spatially distributed induced strain actuators, J. Compos. Mater., vol. 25, no. 4, pp. 433–452, 1991. DOI: 10.1177/002199839102500405.
  • J.M.S. Moita, I.F. Correia, C.M.M. Soares, and C.A.M. Soares, Active control of adaptive laminated structures with bonded piezoelectric sensors and actuators, Comput.Struct., vol. 82, no. 17-19, pp. 1349–1358, 2004. DOI: 10.1016/j.compstruc.2004.03.030.
  • J.M.S. Moita, C.M.M. Soares, and C.A.M. Soares, Geometrically non-linear analysis of composite structures with integrated piezoelectric sensors and actuators, Compos. Struct., vol. 57, no. 1-4, pp. 253–261, 2002. DOI: 10.1016/S0263-8223(02)00092-2.
  • M.C. Ray, and N. Mallik, Finite element analysis of smart structures containing piezoelectric fiber-reinforced composite actuator, AIAA J., vol. 42, no. 7, pp. 1398–1405, 2004. DOI: 10.2514/1.4030.
  • S.B. Kerur, and A. Ghosh, Active vibration control of composite plate using AFC actuator and PVDF sensor, Int. J. Str. Stab. Dyn., vol. 11, no. 02, pp. 237–255, 2011. DOI: 10.1142/S0219455411004075.
  • K. Chandrashekhara, and A.N. Agarwal, Active vibration control of laminated composite plates using piezoelectric devices: a finite element approach, J. Intell. Mater. Syst. Struct., vol. 4, no. 4, pp. 496–508, 1993. DOI: 10.1177/1045389X9300400409.
  • J.N. Reddy, A simple higher-order theory for laminated composite plates, J. Appl. Mech., vol. 51, no. 4, pp. 745–752, 1984. DOI: 10.1115/1.3167719.
  • T. Kant, and B.S. Manjunatha, An unsymmetric FRC laminate C° finite element model with 12 degrees of freedom per node, Eng. Comput., vol. 5, no. 4, pp. 300–308, 1988. DOI: 10.1108/eb023749.
  • R.P. Shimpi, Refined plate theory and its variants, AIAA J., vol. 40, no. 1, pp. 137–146, 2002. DOI: 10.2514/2.1622.
  • A. Tounsi, M.S.A. Houari, S. Benyoucef, and E.A. Adda Bedia, A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates, Aerosp. Sci. Technol., vol. 24, no. 1, pp. 209–220, 2013. DOI: 10.1016/j.ast.2011.11.009.
  • A. Mahi, E.A. Adda Bedia, and A. Tounsi, A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates, Appl. Math. Modell., vol. 39, no. 9, pp. 2489–2508, 2015. DOI: 10.1016/j.apm.2014.10.045.
  • B. Samanta, M.C. Ray, and R. Bhattacharyya, Finite element model for active control of intelligent structures, AIAA J., vol. 34, no. 9, pp. 1885–1893, 1996. DOI: 10.2514/3.13322.
  • S.M. Shiyekar, and T. Kant, Higher order shear deformation effects on analysis of laminates with piezoelectric fibre reinforced composite actuators, Compos. Struct. ., vol. 93, no. 12, pp. 3252–3261, 2011. DOI: 10.1016/j.compstruct.2011.05.016.
  • J. Rouzegar, R. Koohpeima, and F. Abad, Dynamic analysis of laminated composite plate integrated with a piezoelectric actuator using four-variable refined plate theory, Iran. J. Sci. Technol. Trans. Mech. Eng., vol. 44, no. 3, pp. 557–514, 2020. DOI: 10.1007/s40997-019-00284-1.
  • M.R. Barati, H. Shahverdi, and A.M. Zenkour, Electro-mechanical vibration of smart piezoelectric FG plates with porosities according to a refined four-variable theory, Mech. Adv. Mater. Struct., vol. 24, no. 12, pp. 987–998, 2017. DOI: 10.1080/15376494.2016.1196799.
  • A.M. Zenkour, and Z.S. Hafed, Bending analysis of functionally graded piezoelectric plates via quasi-3D trigonometric theory, Mech. Adv. Mater. Struct., vol. 27, no. 18, pp. 1551–1562, 2020. DOI: 10.1080/15376494.2018.1516325.
  • A.M. Zenkour, and R.A. Alghanmi, Static response of sandwich plates with FG core and piezoelectric faces under thermo-electro-mechanical loads and resting on elastic foundations, Thin-Walled Struct., vol. 157, pp. 107025, 2020. DOI: 10.1016/j.tws.2020.107025.
  • A. Milazzo, and C. Orlando, An equivalent single-layer approach for free vibration analysis of smart laminated thick composite plates, Smart Mater. Struct., vol. 21, no. 7, pp. 075031, 2012. DOI: 10.1088/0964-1726/21/7/075031.
  • J.N. Reddy, On the generalization of displacement-based laminate theories, Appl. Mech. Rev., vol. 42, no. 11S, pp. S213–S222, 1989. DOI: 10.1115/1.3152393.
  • A.J.M. Ferreira, Analysis of composite plates using a layerwise theory and multiquadrics discretization, Mech. Adv. Mater. Struct., vol. 12, no. 2, pp. 99–112, 2005. DOI: 10.1080/15376490490493952.
  • E. Carrera, Evaluation of layerwise mixed theories for laminated plates analysis, AIAA J., vol. 36, no. 5, pp. 830–839, 1998. DOI: 10.2514/2.444.
  • M. Di Sciuva, Multilayered anisotropic plate models with continuous interlaminar stresses, Compos. Struct., vol. 22, no. 3, pp. 149–167, 1992. DOI: 10.1016/0263-8223(92)90003-U.
  • M. Cho, and R.R. Parmerter, Efficient higher order composite plate theory for general lamination configurations, AIAA J., vol. 31, no. 7, pp. 1299–1306, 1993. DOI: 10.2514/3.11767.
  • H. Murakami, Laminated composite plate theory with improved in-plane responses, J. Appl. Mech., vol. 53, no. 3, pp. 661–666, 1986. DOI: 10.1115/1.3171828.
  • A. Chakrabarti, and A.H. Sheikh, Vibration of laminate-faced sandwich plate by a new refined element, J. Aerosp. Eng., vol. 17, no. 3, pp. 123–134, 2004. DOI: 10.1061/(ASCE)0893-1321(2004)17:3(123).
  • M.K. Pandit, A.H. Sheikh, and B.N. Singh, Analysis of laminated sandwich plates based on an improved higher order zigzag theory, J. Sandwich Struct. Mater.., vol. 12, no. 3, pp. 307–326, 2010a. DOI: 10.1177/1099636209104517.
  • E.J. Barbero, J.N. Reddy, and J.L. Teply, General two-dimensional theory of laminated cylindrical shells, AIAA J., vol. 28, no. 3, pp. 544–553, 1990. DOI: 10.2514/3.10426.
  • A. Nosier, R.K. Kapania, and J.N. Reddy, Free vibration analysis of laminated plates using a layerwise theory, AIAA J., vol. 31, no. 12, pp. 2335–2346, 1993. DOI: 10.2514/3.11933.
  • J.L. Mantari, and C.G. Soares, Generalized layerwise HSDT and finite element formulation for symmetric laminated and sandwich composite plates, Compos. Struct., vol. 105, pp. 319–331, 2013. DOI: 10.1016/j.compstruct.2013.04.042.
  • M. Cetkovic, Thermo-mechanical bending of laminated composite and sandwich plates using layerwise displacement model, Compos. Struct. ., vol. 125, pp. 388–399, 2015. DOI: 10.1016/j.compstruct.2015.01.051.
  • J.S. Moita, A.L. Araújo, P. Martins, C.M. Soares, and C.M. Soares, A finite element model for the analysis of viscoelastic sandwich structures, Comput. Struct., vol. 89, no. 21-22, pp. 1874–1881, 2011. DOI: 10.1016/j.compstruc.2011.05.008.
  • J.S. Moita, A.L. Araújo, P.G. Martins, C.M.M. Soares, and C.A.M. Soares, Analysis of active-passive plate structures using a simple and efficient finite element model, Mech. Adv. Mater. Struct., vol. 18, no. 2, pp. 159–169, 2011. DOI: 10.1080/15376494.2010.496062.
  • M. Cho, and J. Oh, Higher order zig-zag theory for fully coupled thermo-electric–mechanical smart composite plates, Int. J. Solids Struct. ., vol. 41, no. 5-6, pp. 1331–1356, 2004. DOI: 10.1016/j.ijsolstr.2003.10.020.
  • S. Kapuria, and S.D. Kulkarni, Static electromechanical response of smart composite/sandwich plates using an efficient finite element with physical and electric nodes, Int. J. Mech. Sci., vol. 51, no. 1, pp. 1–20, 2009. DOI: 10.1016/j.ijmecsci.2008.11.005.
  • R.P. Khandelwal, A. Chakrabarti, and P. Bhargava, An efficient hybrid plate model for accurate analysis of smart composite laminates, J. Intell. Mater. Syst. Struct., vol. 24, no. 16, pp. 1927–1950, 2013. DOI: 10.1177/1045389X13486713.
  • B.B. Mishra, J.K. Nath, T. Biswal, and T. Das, Transverse shear stress relaxed zigzag theory for cylindrical bending of laminated composite and piezoelectric panels, Appl. Math. Modell., vol. 71, pp. 584–600, 2019. DOI: 10.1016/j.apm.2019.02.045.
  • T. Das, and J.K. Nath, Zigzag theory for piezoelectric-layer-integrated functionally graded material plates, AIAA J., vol. 59, no. 4, pp. 1406–1416, 2021. DOI: 10.2514/1.J059107.
  • A.M. Zenkour, and H.D. El-Shahrany, Control of a laminated composite plate resting on Pasternak’s foundations using magnetostrictive layers, Arch. Appl. Mech., vol. 90, no. 9, pp. 1943–1959, 2020. DOI: 10.1007/s00419-020-01705-3.
  • M. Abualnour, M.S.A. Houari, A. Tounsi, E.A.A. Bedia, and S.R. Mahmoud, A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates, Compos. Struct., vol. 184, pp. 688–697, 2018. DOI: 10.1016/j.compstruct.2017.10.047.
  • M.M. Alipour, An analytical approach for bending and stress analysis of cross/angle-ply laminated composite plates under arbitrary non-uniform loads and elastic foundations, Arch. Civil Mech. Eng., vol. 16, no. 2, pp. 193–210, 2016. DOI: 10.1016/j.acme.2015.11.001.
  • A.A. Daikh, M.S.A. Houari, and M.A. Eltaher, A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates, Compos. Struct., vol. 262, pp. 113347, 2021. DOI: 10.1016/j.compstruct.2020.113347.
  • M.R. Barati, M.H. Sadr, and A.M. Zenkour, Buckling analysis of higher order graded smart piezoelectric plates with porosities resting on elastic foundation, Int. J. Mech. Sci., vol. 117, pp. 309–320, 2016. DOI: 10.1016/j.ijmecsci.2016.09.012.
  • M.O. Belarbi, A.M. Zenkour, A. Tati, S.J. Salami, A. Khechai, and M.S.A. Houari, An efficient eight‐node quadrilateral element for free vibration analysis of multilayer sandwich plates, Int. J. Numer. Methods Eng., vol. 122, no. 9, pp. 2360–2387, 2021. DOI: 10.1002/nme.6624.
  • V.K. Singh, T.R. Mahapatra, and S.K. Panda, Nonlinear transient analysis of smart laminated composite plate integrated with PVDF sensor and AFC actuator, Compos. Struct., vol. 157, pp. 121–130, 2016. DOI: 10.1016/j.compstruct.2016.08.020.
  • A. Garg, H.D. Chalak, and A. Chakrabarti, Bending analysis of functionally graded sandwich plates using HOZT including transverse displacement effects, Mech. Based Des. Struct. Mach., pp. 1–15, 2020.
  • R.P. Khandelwal, A. Chakrabarti, and P. Bhargava, Static and dynamic control of smart composite laminates, AIAA J., vol. 52, no. 9, pp. 1896–1914, 2014. DOI: 10.2514/1.J052666.
  • S. Roy, S. Nath Thakur, and C. Ray, A modified higher order zigzag theory for response analysis of doubly curved cross-ply laminated composite shells, Mech. Adv. Mater. Struct., pp. 1–15, 2021.
  • B. Devarajan, and R.K. Kapania, Thermal buckling of curvilinearly stiffened laminated composite plates with cutouts using isogeometric analysis, Compos. Struct., vol. 238, pp. 111881, 2020. DOI: 10.1016/j.compstruct.2020.111881.
  • T. Liu, Y. Jiang, S. Li, Q. Liu, and C. Wang, Isogeometric Analysis for Active Control of Piezoelectric Functionally Graded Plates in Thermal Environment, Shock Vib., vol. 2021, pp. 1–18, 2021. DOI: 10.1155/2021/5514476.
  • Ö. Civalek, and M. Avcar, Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method, Eng. Comput., pp. 1–33, 2020.
  • O. Ragb, M. Salah, M.S. Matbuly, and R.B.M. Amer, Vibration analysis of piezoelectric composite plate resting on nonlinear elastic foundations using Sinc and discrete singular convolution differential quadrature techniques, Math. Prob. Eng., vol. 2020, pp. 1–22, 2020. DOI: 10.1155/2020/7592302.
  • M. Momeni, and N. Fallah, Meshfree finite volume method for active vibration control of temperature-dependent piezoelectric laminated composite plates, Eng. Anal. Boundary Elem. , vol. 130, pp. 364–378, 2021. DOI: 10.1016/j.enganabound.2021.06.002.
  • R. Moradi-Dastjerdi, and K. Behdinan, Free vibration response of smart sandwich plates with porous CNT-reinforced and piezoelectric layers, Appl. Math. Modell., vol. 96, pp. 66–79, 2021. DOI: 10.1016/j.apm.2021.03.013.
  • E. Carrera, Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking, ARCO, vol. 10, no. 3, pp. 215–296, 2003. DOI: 10.1007/BF02736224.
  • M. Filippi, E. Carrera, and A.M. Zenkour, Static analyses of FGM beams by various theories and finite elements, Composites Part B: Eng., vol. 72, pp. 1–9, 2015. DOI: 10.1016/j.compositesb.2014.12.004.
  • J.L. Mantari, I.A. Ramos, and A.M. Zenkour, A unified formulation for laminated composite and sandwich plates subject to thermal load using various plate theories, Int. J. Appl. Mechanics., vol. 08, no. 08, pp. 1650087, 2016. DOI: 10.1142/S1758825116500873.
  • M. Cinefra, and E. Carrera, Shell finite elements for the analysis of multifield problems in multilayered composite structures, AMM, vol. 828, pp. 215–236, 2016. DOI: 10.4028/www.scientific.net/AMM.828.215.
  • S. Brischetto, and E. Carrera, Coupled thermo-electro-mechanical analysis of smart plates embedding composite and piezoelectric layers, J. Therm. Stresses., vol. 35, no. 9, pp. 766–804, 2012. DOI: 10.1080/01495739.2012.689232.
  • R.B. Bharati, M. Filippi, P.K. Mahato, and E. Carrera, Flutter analysis of laminated composite structures using Carrera Unified Formulation, Compos. Struct., vol. 253, pp. 112759, 2020. DOI: 10.1016/j.compstruct.2020.112759.
  • S. Irfan, and F. Siddiqui, A review of recent advancements in finite element formulation for sandwich plates, Chin. J. Aeronaut., vol. 32, no. 4, pp. 785–798, 2019. DOI: 10.1016/j.cja.2018.11.011.
  • N.J. Pagano, Exact solutions for rectangular bidirectional composites and sandwich plates, J. Compos. Mater., vol. 4, no. 1, pp. 20–34, 1970. DOI: 10.1177/002199837000400102.
  • K.M. Liew, Z.Z. Pan, and L.W. Zhang, An overview of layerwise theories for composite laminates and structures: Development, numerical implementation and application, Compos. Struct., vol. 216, pp. 240–259, 2019. DOI: 10.1016/j.compstruct.2019.02.074.
  • A. Chanda, and R. Sahoo, Analytical modeling of laminated composite plates integrated with piezoelectric layer using Trigonometric Zigzag theory, J. Compos. Mater., vol. 54, no. 29, pp. 4691–4708, 2020. DOI: 10.1177/0021998320930807.
  • A. Chanda, and R. Sahoo, Forced Vibration Responses of Smart Composite Plates using Trigonometric Zigzag Theory, Int. J. Str. Stab. Dyn., vol. 21, no. 05, pp. 2150067, 2021. DOI: 10.1142/S021945542150067X.
  • K. Bhaskar, and T.K. Varadan, Refinement of higher-order laminated plate theories, AIAA J., vol. 27, no. 12, pp. 1830–1831, 1989. DOI: 10.2514/3.10345.
  • M. Di Sciuva, Bending, vibration and buckling of simply supported thick multilayered orthotropic plates: an evaluation of a new displacement model, J. Sound Vib., vol. 105, no. 3, pp. 425–442, 1986. DOI: 10.1016/0022-460X(86)90169-0.
  • R.D. Cook, D.S. Malkus, M.E. Plesha, and R.J. Witt, Finite Element Modeling for Stress Analysis, John Wiley & Sons Inc., New York, 2007.
  • J.N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd ed., CRC Press, New York, 2004.
  • J. Rouzegar, and F. Abad, Analysis of cross-ply laminates with piezoelectric fiber-reinforced composite actuators using four-variable refined plate theory, Journal of Theoretical and Applied Mechanics., vol. 53, no. 2, pp. 439–452, 2015.
  • N. Grover, B.N. Singh, and D.K. Maiti, Analytical and finite element modeling of laminated composite and sandwich plates: an assessment of a new shear deformation theory for free vibration response, Int. J. Mech. Sci., vol. 67, pp. 89–99, 2013. DOI: 10.1016/j.ijmecsci.2012.12.010.
  • T. Kant, D.R.J. Owen, and O.C. Zienkiewicz, A refined higher-order C plate bending element, Comput. Struct., vol. 15, no. 2, pp. 177–183, 1982. DOI: 10.1016/0045-7949(82)90065-7.
  • N.S. Putcha, and J.N. Reddy, A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates, Comput. Struct., vol. 22, no. 4, pp. 529–538, 1986. DOI: 10.1016/0045-7949(86)90002-7.
  • S.S. Sahoo, S.K. Panda, and V.K. Singh, Experimental and numerical investigation of static and free vibration responses of woven glass/epoxy laminated composite plate, Proc. Inst. Mech. Eng. Part L: J. Mater. Design Appl., vol. 231, no. 5, pp. 463–478, 2017. DOI: 10.1177/1464420715600191.
  • M.C. Ray, R. Bhattacharya, and B. Samanta, Exact solutions for static analysis of intelligent structures, AIAA J., vol. 31, no. 9, pp. 1684–1691, 1993. DOI: 10.2514/3.11831.
  • J. Rouzegar, and A. Abbasi, A refined finite element method for bending analysis of laminated plates integrated with piezoelectric fiber-reinforced composite actuators, Acta Mech. Sin. ., vol. 34, no. 4, pp. 689–705, 2018. DOI: 10.1007/s10409-017-0745-9.
  • P. Topdar, A.H. Sheikh, and N. Dhang, Response and control of smart laminates using a refined hybrid plate model, AIAA J., vol. 44, no. 11, pp. 2636–2644, 2006. DOI: 10.2514/1.6467.
  • P.K. Swain, D.K. Maiti, and B.N. Singh, Passive flutter suppression of damaged smart laminated composite plate using active fiber composite layer, Mech. Based Des. Struct. Mach., pp. 1–20, 2020.
  • J.M.S. Moita, C.M.M. Soares, and C.A.M. Soares, Active control of forced vibrations in adaptive structures using a higher order model, Compos. Struct., vol. 71, no. 3-4, pp. 349–355, 2005. DOI: 10.1016/j.compstruct.2005.09.009.
  • S.Y. Wang, S.T. Quek, and K.K. Ang, Vibration control of smart piezoelectric composite plates, Smart Mater. Struct., vol. 10, no. 4, pp. 637–644, 2001. DOI: 10.1088/0964-1726/10/4/306.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.