355
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Bending and free vibration and analysis of laminated plates on Winkler foundations based on meshless layerwise theory

, , , &
Pages 6168-6187 | Received 18 Apr 2021, Accepted 22 Aug 2021, Published online: 26 Oct 2021

References

  • N. Belbachir, K. Draich, A. A. Bousahla, M. Bourada, A. Tounsi, and M. Mohammadimehr, Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings, Steel Compos Struct., vol. 33, pp. 81–92, 2019.
  • X. Liu, X. Liu, and S. C. Xie, A highly accurate analytical spectral flexibility formulation for buckling and wrinkling of orthotropic rectangular plates, Int. J. Mech. Sci., vol. 168, pp. 105311, 2020. DOI: 10.1016/j.ijmecsci.2019.105311.
  • X. Liu, X. Liu, and W. Zhou, An analytical spectral stiffness method for buckling of rectangular plates on Winkler foundation subject to general boundary conditions, Appl. Math. Modell., vol. 86, pp. 36–53, 2020. DOI: 10.1016/j.apm.2020.05.010.
  • J. W. Yan, L. H. Tong, and P. Xiang, Free vibration analysis of single-walled boron nitride nanotubes based on a computational mechanics framework, Superlattice Microstruct., vol. 112, pp. 230–248, 2017. DOI: 10.1016/j.spmi.2017.09.028.
  • M. Sahla, H. Saidi, K. Draiche, A. A. Bousahla, F. Bourada, and A. Tounsi, Free vibration analysis of angle-ply laminated composite and soft core sandwich plates, Steel Compos Struct., vol. 33, pp. 663–679, 2019.
  • X. Liu, X. Y. Zhao, and C. Xie, Exact free vibration analysis for membrane assemblies with general classical boundary conditions, J. Sound Vib., vol. 485, pp. 115484, 2020. DOI: 10.1016/j.jsv.2020.115484.
  • J. W. Yan, B. L. Ye, P. Xiang, and H. P. Wang, Interlayer equilibrium between graphitic nanostructures using continuum modeling approaches, Appl. Math. Modell., vol. 78, pp. 886–906, 2020. DOI: 10.1016/j.apm.2019.09.028.
  • P. Xiang, H. P. Wang, and L. Z. Jiang, Simulation and sensitivity analysis of microtubule-based biomechanical mass detector, J. Nanosci. Nanotechnol., vol. 19, no. 2, pp. 1018–1025, 2019. DOI: 10.1166/jnn.2019.15736.
  • O. Allam, et al., A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells, Comput Concrete., vol. 26, pp. 185–201, 2020.
  • N. Belbachir, et al., Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory, Smart Struct Syst., vol. 25, pp. 409–422, 2020.
  • M. Abualnour, et al., Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory, Comput Concrete., vol. 24, pp. 489–498, 2019.
  • P. Bose, and J. N. Reddy, Analysis of composite plates using various plate theories – Part 1: Formulation and analytical solutions, Struct Eng Mech., vol. 6, no. 6, pp. 583–612, 1998. DOI: 10.12989/sem.1998.6.6.583.
  • J. M. Whitney, and N. J. Pagano, Shear deformation in heterogeneous anisotropic plates, J Appl Mech., vol. 37, no. 4, pp. 1031–1036, 1970. DOI: 10.1115/1.3408654.
  • K. Draiche, A. A. Bousahla, A. Tounsi, A. S. Alwabli, A. Tounsi, and S. R. Mahmoud, Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory, Comput Concrete., vol. 24, pp. 369–378, 2019.
  • J. N. Reddy, A simple higher-order theory for laminated composite plates, J Appl Mech., vol. 51, no. 4, pp. 745–752, 1984. DOI: 10.1115/1.3167719.
  • J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd ed. CRC Press, BocaRaton, pp. 855, 2004.
  • Erasmo Carrera, F. A. F, and M. Ci, Chapter 5 - Advanced theories for composite beams, plates and shells. In: Carrera E, F. A. F, and M. Ci, (Eds.), Thermal Stress Analysis of Composite Beams, Plates and Shells, Academic Press, Oxford, pp. 117-217, 2017.
  • E. Carrera, and M. Petrolo, Guidelines and recommendations to construct theories for metallic and composite plates, AIAA J., vol. 48, no. 12, pp. 2852–2866, 2010. DOI: 10.2514/1.J050316.
  • E. Carrera, Mixed layer-wise models for multilayered plates analysis, Compos. Struct., vol. 43, no. 1, pp. 57–70, 1998. DOI: 10.1016/S0263-8223(98)00097-X.
  • A. J. M. Ferreira, Analysis of composite plates using a layerwise theory and multiquadrics discretization, Mech. Adv. Mater. Struct., vol. 12, no. 2, pp. 99–112, 2005. DOI: 10.1080/15376490490493952.
  • A. J. M. Ferreira, C. M. C. Roque, R. M. N. Jorge, and E. J. Kansa, Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and multiquadrics discretizations, Eng. Anal. Boundary Elem., vol. 29, no. 12, pp. 1104–1114, 2005. DOI: 10.1016/j.enganabound.2005.07.004.
  • J. N. Reddy, A generalization of two-dimensional theories of laminated composite plates, Commun. Appl. Numer. Method., vol. 3, no. 3, pp. 173–180, 1987. VolDOI: 10.1002/cnm.1630030303.
  • J. N. Reddy, and D. H. Robbins, Jr. Theories and computational models for composite laminates, Appl. Mech. Rev., vol. 47, no. 6, pp. 147–169, 1994. DOI: 10.1115/1.3111076.
  • E. Carrera, Multilayered shell theories accounting for layerwise mixed description, Part 1: Governing equations, AIAA J., vol. 37, no. 9, pp. 1107–1116, 1999. VolDOI: 10.2514/2.821.
  • M. Di Sciuva, An improved shear-deformation theory for moderately thick multilayered anisotropic shells and plates, J. Appl. Mech., vol. 54, no. 3, pp. 589–596, 1987. DOI: 10.1115/1.3173074.
  • A. Toledano, and H. Murakami, A composite plate theory for arbitrary laminate configurations, J. Appl. Mech., vol. 54, no. 1, pp. 181–189, 1987. DOI: 10.1115/1.3172955.
  • T. S. Plagianakos, and D. A. Saravanos, Higher-order layerwise laminate theory for the prediction of interlaminar shear stresses in thick composite and sandwich composite plates, Compos. Struct., vol. 87, no. 1, pp. 23–35, 2009. DOI: 10.1016/j.compstruct.2007.12.002.
  • T. S. Plagianakos, and E. G. Papadopoulos, Low-energy impact response of composite and sandwich composite plates with piezoelectric sensory layers, Int. J. Solids Struct., vol. 51, no. 14, pp. 2713–2727, 2014. DOI: 10.1016/j.ijsolstr.2014.04.005.
  • C. H. Thai, S. Kulasegaram, L. V. Tran, and H. Nguyen-Xuan, Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach, Comput. Struct., vol. 141, pp. 94–112, 2014. DOI: 10.1016/j.compstruc.2014.04.003.
  • N. Grover, D. K. Maiti, and B. N. Singh, A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates, Compos. Struct., vol. 95, pp. 667–675, 2013. DOI: 10.1016/j.compstruct.2012.08.012.
  • M. Karama, K. S. Afaq, and S. Mistou, Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity, Int. J. Solid. Struct., vol. 40, no. 6, pp. 1525–1546, 2003. DOI: 10.1016/S0020-7683(02)00647-9.
  • C. H. Thai, A. J. M. Ferreira, E. Carrera, and H. Nguyen-Xuan, Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory, Compos. Struct., vol. 104, pp. 196–214, 2013. DOI: 10.1016/j.compstruct.2013.04.002.
  • S. Wang, and Y. Zhang, Vibration analysis of rectangular composite laminated plates using layerwise B-spline finite strip method, Compos. Struct., vol. 68, no. 3, pp. 349–358, 2005. DOI: 10.1016/j.compstruct.2004.04.001.
  • K. M. Liew, Z. Z. Pan, and L. W. Zhang, An overview of layerwise theories for composite laminates and structures: Development, numerical implementation and application, Compos. Struct., vol. 216, pp. 240–259, 2019. DOI: 10.1016/j.compstruct.2019.02.074.
  • X. Liu, L. Z. Jiang, P. Xiang, W. B. Zhou, Z. P. Lai, and Y. L. Feng, Stochastic finite element method based on point estimate and Karhunen-Loeve expansion, Arch. Appl. Mech. ., vol. 91, no. 4, pp. 1257–1271, 2021. DOI: 10.1007/s00419-020-01819-8.
  • L. Z. Jiang, X. Liu, P. Xiang, and W. B. Zhou, Train-bridge system dynamics analysis with uncertain parameters based on new point estimate method, Eng. Struct., vol. 199, pp. 109454, 2019. DOI: 10.1016/j.engstruct.2019.109454.
  • P. Xiang, Q. Xia, L. Z. Jiang, L. Peng, J. W. Yan, and X. Liu, Free vibration analysis of FG-CNTRC conical shell panels using the kernel particle Ritz element-free method, Compos. Struct., vol. 255, pp. 112987, 2021. DOI: 10.1016/j.compstruct.2020.112987.
  • L. W. Zhang, Z. X. Lei, and K. M. Liew, Computation of vibration solution for functionally graded carbon nanotube-reinforced composite thick plates resting on elastic foundations using the element-free IMLS-Ritz method, Appl. Math. Comput., vol. 256, pp. 488–504, 2015. DOI: 10.1016/j.amc.2015.01.066.
  • T. Belytschko, Y. Y. Lu, and L. Gu, Element-free Galerkin methods, Int. J. Numer. Meth. Eng., vol. 37, no. 2, pp. 229–256, 1994. DOI: 10.1002/nme.1620370205.
  • C. H. Thai, A. J. M. Ferreira, and H. Nguyen-Xuan, Naturally stabilized nodal integration meshfree formulations for analysis of laminated composite and sandwich plates, Compos. Struct., vol. 178, pp. 260–276, 2017. DOI: 10.1016/j.compstruct.2017.06.049.
  • C. H. Thai, and P. Phung-Van, A meshfree approach using naturally stabilized nodal integration for multilayer FG GPLRC complicated plate structures, Eng. Anal. Boundary Elem., vol. 117, pp. 346–358, 2020. DOI: 10.1016/j.enganabound.2020.04.001.
  • L. D. C. Ramalho, J. Belinha, and R. D. S. G. Campilho, The numerical simulation of crack propagation using radial point interpolation meshless methods, Eng. Anal. Boundary Elem., vol. 109, pp. 187–198, 2019. DOI: 10.1016/j.enganabound.2019.10.001.
  • L. D. C. Ramalho, I. J. Sanchez-Arce, R. D. S. G. Campilho, and J. Belinha, Strength prediction of composite single lap joints using the radial point interpolation method, Compos. Struct., vol. 259, pp. 113228, 2021. DOI: 10.1016/j.compstruct.2020.113228.
  • Y. Li, G. R. Liu, and J. H. Yue, A novel node-based smoothed radial point interpolation method for 2D and 3D solid mechanics problems, Comput. Struct., vol. 196, pp. 157–172, 2018. DOI: 10.1016/j.compstruc.2017.11.010.
  • A. Tounsi, et al., A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation, Steel Compos. Struct., vol. 34, pp. 511–524, 2020.
  • N. Bendenia, et al., Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation, Comput. Concrete., vol. 26, pp. 213–226, 2020.
  • M. Guellil, et al., Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation, Steel Compos. Struct., vol. 38, pp. 1–15, 2021.
  • F. Bourada, et al., Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation, Comput. Concrete., vol. 25, pp. 485–495, 2020.
  • M. Rabhi, et al., A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions, Geomech. Eng., vol. 22, pp. 119–132, 2020.
  • S. C. Chikr, et al., A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach, Geomech. Eng., vol. 21, pp. 471–487, 2020.
  • S. Refrafi, et al., Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations, Comput. Concrete., vol. 25, pp. 311–325, 2020.
  • H.-H. Phan-Dao, C. H. Thai, J. Lee, and H. Nguyen-Xuan, Analysis of laminated composite and sandwich plate structures using generalized layerwise HSDT and improved meshfree radial point interpolation method, Aerosp. Sci. Technol., vol. 58, pp. 641–660, 2016. DOI: 10.1016/j.ast.2016.09.017.
  • F. Auricchio, L. B. da Veiga, A. Buffa, C. Lovadina, A. Reali, and G. Sangalli, A fully “locking-free” isogeometric approach for plane linear elasticity problems: A stream function formulation, Comput. Method Appl. Mech. Eng., vol. 197, no. 1-4, pp. 160–172, 2007. DOI: 10.1016/j.cma.2007.07.005.
  • J. Kiendl, Y. Bazilevs, M. C. Hsu, R. Wüchner, and K. U. Bletzinger, The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches, Comput. Method. Appl. Mech. Eng., vol. 199, no. 37–40, pp. 2403–2416, 2010. DOI: 10.1016/j.cma.2010.03.029.
  • G. R. Liu, and Y. T. Gu, A point interpolation method for two-dimensional solids, Int. J. Numer. Meth. Eng., vol. 50, no. 4, pp. 937–951, 2001. VolDOI: 10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X.
  • C. H. Thai, A. J. M. Ferreira, M. A. Wahab, and H. Nguyen-Xuan, A generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates based on isogeometric analysis, Acta Mech., vol. 227, no. 5, pp. 1225–1250, 2016. DOI: 10.1007/s00707-015-1547-4.
  • H. Arya, R. P. Shimpi, and N. K. Naik, A zigzag model for laminated composite beams, Compos. Struct., vol. 56, no. 1, pp. 21–24, 2002. DOI: 10.1016/S0263-8223(01)00178-7.
  • H. Nguyen-Xuan, C. H. Thai, and T. Nguyen-Thoi, Isogeometric finite element analysis of composite sandwich plates using a higher order shear deformation theory, Compos Part B Eng., vol. 55, pp. 558–574, 2013. DOI: 10.1016/j.compositesb.2013.06.044.
  • C. H. Thai, A. J. M. Ferreira, S. P. A. Bordas, T. Rabczuk, and H. Nguyen-Xuan, Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory, Eur J Mech Solid., vol. 43, pp. 89–108, 2014. DOI: 10.1016/j.euromechsol.2013.09.001.
  • G. Watts, S. Singh, and F. Pathan, Meshfree analysis of non-rectangular sandwich plates based on refined C0 higher order shear deformation theories, Eng. Anal. Boundary Elem., vol. 120, pp. 180–194, 2020. DOI: 10.1016/j.enganabound.2020.08.011.
  • B. N. Pandya, and T. Kant, Higher-order shear deformable theories for flexure of sandwich plates—Finite element evaluations, Int. J. Solids Struct., vol. 24, no. 12, pp. 1267–1286, 1988. DOI: 10.1016/0020-7683(88)90090-X.
  • A. J. M. Ferreira, C. M. C. Roque, and P. A. L. S. Martins, Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method, Compos Part B: Eng., vol. 34, no. 7, pp. 627–636, 2003. DOI: 10.1016/S1359-8368(03)00083-0.
  • A. J. M. Ferreira, G. E. Fasshauer, R. C. Batra, and J. D. Rodrigues, Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter, Compos. Struct., vol. 86, no. 4, pp. 328–343, 2008. DOI: 10.1016/j.compstruct.2008.07.025.
  • J. L. Mantari, A. S. Oktem, and C. Guedes Soares, Guedes Soares C. A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates, Int. J. Solids Struct., vol. 49, no. 1, pp. 43–53, 2012. DOI: 10.1016/j.ijsolstr.2011.09.008.
  • S. Srinivas, A refined analysis of composite laminates, J. Sound Vib., vol. 30, no. 4, pp. 495–507, 1973. DOI: 10.1016/S0022-460X(73)80170-1.
  • D. Zhou, Y. K. Cheung, S. H. Lo, and F. T. K. Au, Three-dimensional vibration analysis of rectangular thick plates on Pasternak foundation, Int. J. Numer. Meth. Eng., vol. 59, no. 10, pp. 1313–1334, 2004. DOI: 10.1002/nme.915.
  • A. W. Leissa, The free vibration of rectangular plates, J. Sound Vib., vol. 31, no. 3, pp. 257–293, 1973. DOI: 10.1016/S0022-460X(73)80371-2.
  • E. Carrera, Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking, ARCO., vol. 10, no. 3, pp. 215–296, 2003. DOI: 10.1007/BF02736224.
  • E. Carrera, M. Filippi, and E. Zappino, Free vibration analysis of rotating composite blades via Carrera Unified Formulation, Compos. Struct., vol. 106, pp. 317–325, 2013. DOI: 10.1016/j.compstruct.2013.05.055.
  • S. Natarajan, A. J. M. Ferreira, S. P. A. Bordas, E. Carrera, and M. Cinefra, Analysis of composite plates by a unified formulation-cell based smoothed finite element method and field consistent elements, Compos. Struct., vol. 105, pp. 75–81, 2013. DOI: 10.1016/j.compstruct.2013.04.040.
  • A. J. M. Ferreira, C. M. C. Roque, E. Carrera, and M. Cinefra, Analysis of thick isotropic and cross-ply laminated plates by radial basis functions and a unified formulation, J. Sound Vib., vol. 330, no. 4, pp. 771–787, 2011. DOI: 10.1016/j.jsv.2010.08.037.
  • E. Carrera, and V. V. Zozulya, Carrera unified formulation for the micropolar plates, Mech. Adv. Mater. Struct., 2021. DOI:10.1080/15376494.2021.1889726.
  • M. Cinefra, A. G. de Miguel, M. Filippi, C. Houriet, A. Pagani, and E. Carrera, Homogenization and free-vibration analysis of elastic metamaterial plates by Carrera Unified Formulation finite elements, Mech. Adv. Mater. Struct., vol. 28, no. 5, pp. 476–485, 2021. DOI: 10.1080/15376494.2019.1578005.
  • M. Cinefra, M. C. Moruzzi, S. Bagassi, E. Zappino, and E. Carrera, Vibro-acoustic analysis of composite plate-cavity systems via CUF finite elements, Compos. Struct., vol. 259, pp. 113428, 2021. DOI: 10.1016/j.compstruct.2020.113428.
  • M. Dehghan, and G. H. Baradaran, Buckling and free vibration analysis of thick rectangular plates resting on elastic foundation using mixed finite element and differential quadrature method, Appl. Math. Comput., vol. 218, no. 6, pp. 2772–2784, 2011. DOI: 10.1016/j.amc.2011.08.020.
  • E. Carrera, and L. Demasi, Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 2: Numerical implementations, Int. J. Numer. Meth. Eng., vol. 55, no. 3, pp. 253–291, 2002. DOI: 10.1002/nme.493.
  • S. D. Kulkarni, and S. Kapuria, Free vibration analysis of composite and sandwich plates using an improved discrete Kirchhoff quadrilateral element based on third-order zigzag theory, Comput. Mech., vol. 42, no. 6, pp. 803–824, 2008. DOI: 10.1007/s00466-008-0285-z.
  • H. D. Chalak, A. Chakrabarti, M. A. Iqbal, and A. H. Sheikh, Free vibration analysis of laminated soft core sandwich plates, J. Vib. Acoust. Trans. ASME., vol. 135, no. 1, pp. 135, 2013. DOI: 10.1115/1.4007262.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.