185
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A five-variable model and experiments for dynamic analysis of sandwich plates with holes

, , , , &
Pages 6312-6329 | Received 25 Apr 2021, Accepted 29 Aug 2021, Published online: 28 Sep 2021

References

  • E. Reissner, The effect of transverse shear deformation on the bending of elastic plates, J Appl Mech., vol. 12, no. 2, pp. 69–77, 1945.
  • R.D. Mindlin, Influence of rotary inertia and shear on flexural motions of isotropic elastic plates, J. Appl. Mech., vol. 18, no. 1, pp. 31–38, 1951. DOI: 10.1115/1.4010217.
  • J.N. Reddy, A simple higher-order theory for laminated composite plates, J. Appl. Mech., vol. 51, no. 4, pp. 745–752, 1984. DOI: 10.1115/1.3167719.
  • M.D. Sciuva, Bending, vibration and buckling of simply supported thick multilayered orthotropic plates: An evaluation of a new displacement model, J. Sound Vib., vol. 105, no. 3, pp. 425–442, 1986.
  • T. Kant and B.N. Pandya, A simple finite element formulation of a higher-order theory for unsymmetrically laminated composite plates, Compos. Struct., vol. 9, no. 3, pp. 215–246, 1988. DOI: 10.1016/0263-8223(88)90015-3.
  • K. Bhaskar and T.K. Varadan, Refinement of higher-order laminated plate theories, AIAA J., vol. 27, no. 12, pp. 1830–1831, 1989. DOI: 10.2514/3.10345.
  • T. Kant and K. Swaminathan, Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory, Compos. Struct., vol. 53, no. 1, pp. 73–85, 2001. DOI: 10.1016/S0263-8223(00)00180-X.
  • S.S. Akavci, and A.H. Tanrikulu, Buckling and free vibration analyses of laminated composite plates by using two new hyperbolic shear-deformation theories, Mech. Compos. Mater., vol. 44, no. 2, pp. 145–154, 2008. DOI: 10.1007/s11029-008-9004-2.
  • M. Aydogdu, A new shear deformation theory for laminated composite plates, Compos. Struct., vol. 89, no. 1, pp. 94–101, 2009. DOI: 10.1016/j.compstruct.2008.07.008.
  • N. Grover, D.K. Maiti, and B.N. Singh, A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates, Compos. Struct., vol. 95, pp. 667–675, 2013. DOI: 10.1016/j.compstruct.2012.08.012.
  • E. Carrera, A priori vs. a posteriori evaluation of transverse stresses in multilayered orthotropic plates, Compos. Struct., vol. 48, no. 4, pp. 245–260, 2000. DOI: 10.1016/S0263-8223(99)00112-9.
  • E. Carrera and F. Miglioretti, Selection of appropriate multilayered plate theories by using a generic like algorithm, Compos. Struct., vol. 94, no. 3, pp. 1175–1186, 2012. DOI: 10.1016/j.compstruct.2011.10.013.
  • E. Carrera and S. Brischetto, A survey with numerical assessment of classical and reined theories for the analysis of sandwich plates, Appl. Mech. Rev., vol. 62, pp. 010803, 2009.
  • F. Biscani, G. Giunta, S. Belouettar, E. Carrera, and H. Hu, Variable kinematic plate elements coupled via Arlequin method, Int. J. Numer. Methods Eng., vol. 91, no. 12, pp. 1264–1290, 2012. DOI: 10.1002/nme.4312.
  • E. Carrera and M.D. Demirbas, Evaluation of bending and post-buckling behavior of thin-walled FG beams in geometrical nonlinear regime with CUF, Compos. Struct., vol. 275, pp. 114408, 2021. DOI: 10.1016/j.compstruct.2021.114408.
  • K. Foroutan, E. Carrera, A. Pagani, and H. Ahmadi, Post-buckling and large-deflection analysis of a sandwich FG plate with FG porous core using Carrera’s Unified Formulation, Compos. Struct., vol. 272, pp. 114189, 2021. DOI: 10.1016/j.compstruct.2021.114189.
  • M.D. Sciuva, An improved shear-deformation theory for moderately thick multilayered anisotropic shells and plates, J. Appl. Mech., vol. 54, no. 3, pp. 589–596, 1987.
  • M. Cho, and R.R. Parmertert, Efficient higher order composite plate theory for general lamination configurations, AIAA J., vol. 31, no. 7, pp. 1299–1306, 1993. DOI: 10.2514/3.11767.
  • E. Carrera, C0 Reissner-Mindlin multilayered plate elements including zig-zag and interlaminar stress continuity, Int. J. Numer. Methods Eng., vol. 39, no. 11, pp. 1797–1820, 1996. DOI: 10.1002/(SICI)1097-0207(19960615)39:11<1797::AID-NME928>3.0.CO;2-W.
  • Z. Wu, et al., Experiment and analysis on free vibration of sandwich plates based on an alternative sinusoidal global-local theory, Compos. Struct., vol. 257, pp. 113145, 2021. DOI: 10.1016/j.compstruct.2020.113145.
  • E. Carrera, Evaluation of layerwise mixed theories for laminated plates analysis, AIAA J., vol. 36, no. 5, pp. 830–830, 1998. DOI: 10.2514/2.444.
  • A.J.M. Ferreira, C.M.C. Roque, E. Carrera, M. Cinefra, and O. Polit, Radial basis functions collocation and a unified formulation for bending, vibration and buckling analysis of laminated plates, according to a variation of Murakami’s zig-zag theory, Euro J Mech A/Solids., vol. 30, no. 4, pp. 559–570, 2011. DOI: 10.1016/j.euromechsol.2011.01.007.
  • V.H. Nguyen, T.K. Nguyen, H.T. Thai, et al., A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates, Compos. Part B., vol. 66, no. 66, pp. 233–246, 2014. DOI: 10.1016/j.compositesb.2014.05.012.
  • Z. Wu, S.H. Lo, and X.H. Ren, Selection of displacement parameters in zig-zag models for thermal analysis of laminated composite plates, J. Thermal Stresses., vol. 37, no. 11, pp. 1346–1378, 2014. DOI: 10.1080/01495739.2014.936227.
  • E. Carrera, Historical review of zig-zag theories for multilayered plates and shells, Appl. Mech. Rev., vol. 56, no. 3, pp. 287–308, 2003. DOI: 10.1115/1.1557614.
  • S.R. Marur and T. Kant, Free vibration analysis of fiber reinforced composite beams using higher order theories and finite element modelling, J. Sound Vib., vol. 194, no. 3, pp. 337–351, 1996. DOI: 10.1006/jsvi.1996.0362.
  • J.N. Reddy, Large amplitude flexural vibration of layered composite plates with cutouts, J. Sound Vib., vol. 83, no. 1, pp. 1–10, 1982. DOI: 10.1016/S0022-460X(82)80071-0.
  • A. Kumar and R.P. Shrivastava, Free vibration of square laminates with delamination around a central cutout using HSDT, Compos. Struct., vol. 70, no. 3, pp. 317–333, 2005. DOI: 10.1016/j.compstruct.2004.08.040.
  • M. Hachemi and S.M.H. Cherif, Free vibration analysis of composite laminated and sandwich plate with circular cutout, J. Sandw. Struct. Mater., vol. 22, no. 8, pp. 2655–2691, 2020. DOI: 10.1177/1099636218811393.
  • M. Levy, Memoire sur la theorie des plaques elastique planes, J Math Pure Appl., vol. 30, pp. 219–306, 1877.
  • M. Touratier, An efficient standard plate theory, Int. J. Eng. Sci., vol. 29, no. 8, pp. 901–916, 1991. DOI: 10.1016/0020-7225(91)90165-Y.
  • S.S. Akavci, Two new hyperbolic shear displacement models for orthotropic laminated composite plates, Mech. Compos. Mater, vol. 46, no. 2, pp. 215–226, 2010. DOI: 10.1007/s11029-010-9140-3.
  • A.M. Zenkour, Generalized shear deformation theory for bending analysis of functionally graded plates, Appl. Math. Modell., vol. 30, no. 1, pp. 67–84, 2006. DOI: 10.1016/j.apm.2005.03.009.
  • H. Arya, et al., A zigzag model for laminated composite beams, Compos. Struct., vol. 56, no. 1, pp. 21–24, 2002. DOI: 10.1016/S0263-8223(01)00178-7.
  • N. Grover, B.N. Singh, and D.K. Maiti, New nonpolynomial shear-deformation theories for structural behavior of laminated-composite and sandwich plates, AIAA J., vol. 51, no. 8, pp. 1861–1871, 2013. DOI: 10.2514/1.J052399.
  • N. Grover, B.N. Singh, and D.K. Maiti, Free vibration and buckling characteristics of laminated composite and sandwich plates implementing a secant function based shear deformation theory, Proc Inst Mech Eng Part C, vol. 229, no. 3, pp. 391–406, 2015. DOI: 10.1177/0954406214537799.
  • J.L. Mantari, A.S. Oktem, and C.G. Soares, Bending response of functionally graded plates by using a new higher order shear deformation theory, Compos. Struct., vol. 94, no. 2, pp. 714–723, 2012. DOI: 10.1016/j.compstruct.2011.09.007.
  • D.B. Singh and B.N. Singh, New higher order shear deformation theories for free vibration and buckling analysis of laminated and braided composite plates, Int. J. Mech. Sci., vol. 131–132, pp. 265–277, 2017. DOI: 10.1016/j.ijmecsci.2017.06.053.
  • A. Chakrabarti and A.H. Sheikh, Buckling of laminated composite plates by a new element based on higher order shear deformation theory, Mech. Adv. Mater. Struct., vol. 10, no. 4, pp. 303–317, 2003. DOI: 10.1080/10759410306754.
  • Y.M. Ghugal and A.S. Sayyad, A static flexure of thick isotropic plates using trigonometric shear deformation theory, J Solid Mech., vol. 2, no. 1, pp. 79–90, 2010.
  • A.S. Sayyad and Y.M. Ghugal, Flexure of cross-ply laminated plates using equivalent single layer trigonometric shear deformation theory, Struct Eng Mech., vol. 51, no. 5, pp. 867–891, 2014. DOI: 10.12989/sem.2014.51.5.867.
  • A.S. Sayyad and Y.M. Ghugal, A new shear and normal deformation theory for isotropic, transversely isotropic, laminated composite and sandwich plates, Int. J. Mech. Mater. Des., vol. 10, no. 3, pp. 247–267, 2014. DOI: 10.1007/s10999-014-9244-3.
  • A.S. Sayyad and Y.M. Ghugal, On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results, Compos. Struct., vol. 129, pp. 177–201, 2015. DOI: 10.1016/j.compstruct.2015.04.007.
  • G.M. Kulikov, S.V. Plotnikova, and E. Carrera, A robust, four-node, quadrilateral element for stress analysis of functionally graded plates through higher-order theories, Mech. Adv. Mater. Struct., vol. 25, no. 15–16, pp. 1383–1402, 2018. DOI: 10.1080/15376494.2017.1288994.
  • J. Torabi, R. Ansari, and M. Darvizeh, A C1 continuous hexahedral element for nonlinear vibration analysis of nano-plates with circular cutout based on 3D strain gradient theory, Compos. Struct., vol. 205, pp. 69–85, 2018. DOI: 10.1016/j.compstruct.2018.08.070.
  • J. Torabi and J. Niiranen, Microarchitecture-dependent nonlinear bending analysis for cellular plates with prismatic corrugated cores via an anisotropic strain gradient plate theory of first-order shear deformation, Eng. Struct., vol. 236, pp. 112117, 2021. DOI: 10.1016/j.engstruct.2021.112117.
  • C.H. Thai, A.M. Zenkour, M.A. Wahab, and H. Nguyen-Xuan, A simple four-unknown shear and normal deformations theory for functionally graded isotropic and sandwich plates based on isogeometric analysis, Compos. Struct., vol. 139, pp. 77–95, 2016. DOI: 10.1016/j.compstruct.2015.11.066.
  • M.R. Barati, H. Shahverdi, and A.M. Zenkour, Electro-mechanical vibration of smart piezoelectric FG plates with porosities according to a refined four-variable theory, Mech. Adv. Mater. Struct., vol. 24, no. 12, pp. 987–998, 2017. DOI: 10.1080/15376494.2016.1196799.
  • M. Bouazza, A.M. Zenkour, and N. Benseddiq, Closed-form solutions for thermal buckling analyses of advanced nanoplates according to a hyperbolic four-variable refined theory with small-scale effects, Acta Mech., vol. 229, no. 5, pp. 2251–2265, 2018. DOI: 10.1007/s00707-017-2097-8.
  • A.M. Zenkour and R.A. Alghanmi, Stress analysis of a functionally graded plate integrated with piezoelectric faces via a four-unknown shear deformation theory, Results Phys., vol. 12, pp. 268–277, 2019. DOI: 10.1016/j.rinp.2018.11.045.
  • T.T. Tran, V.K. Tran, Q.H. Pham, and A.M. Zenkour, Extended four-unknown higher-order shear deformation nonlocal theory for bending, buckling and free vibration of functionally graded porous nanoshell resting on elastic foundation, Compos. Struct., vol. 264, pp. 113737, 2021. DOI: 10.1016/j.compstruct.2021.113737.
  • P. Shi, C.Y. Dong, F. Sun, et al., A new higher order shear deformation theory for static, vibration and buckling responses of laminated plates with the isogeometric analysis, Compos. Struct., vol. 204, pp. 342–358, 2018. DOI: 10.1016/j.compstruct.2018.07.080.
  • R. Kumar, A. Lal, B.N. Singh, et al., New transverse shear deformation theory for bending analysis of FGM plate under patch load, Compos. Struct., vol. 208, pp. 91–100, 2019. DOI: 10.1016/j.compstruct.2018.10.014.
  • R.T. Babu, V. Surendra, B.N. Singh, and D.K. Maiti, Dynamic analysis of folded laminated composite plate using nonpolynomial shear deformation theory, Aerosp. Sci. Tech., vol. 106, pp. 106083, 2020. DOI: 10.1016/j.ast.2020.106083.
  • G.P. Bazeley, Y.K. Cheung, B.M. Irons, and O.C. Zienkiewiz, Triangular elements in bending conforming and non-conforming solution, Proc. Conf. Matrix Methods Struct Mech., vol. 7, pp. 547–576, 1965.
  • Y.K. Cheung and W.J. Chen, Refined nine-parameter triangular thin plate bending element by using refined direct stiffness method, Int. J. Numer. Methods Eng., vol. 38, no. 2, pp. 283–298, 1995. DOI: 10.1002/nme.1620380208.
  • S. Brischetto, An exact 3D solution for free vibrations of multilayered cross-ply composite and sandwich plates and shells, Int. J. Appl. Mech., vol. 06, no. 06, pp. 1450076, 2014. DOI: 10.1142/S1758825114500768.
  • A.S. Sayyad and Y.M. Ghugal, On the free vibration of angle-ply laminated composite and soft core sandwich plates, J. Sandw. Struct. Mater., vol. 19, no. 6, pp. 679–711, 2017. DOI: 10.1177/1099636216639000.
  • E. Carrera and A. Ciuffreda, A unified formulation to assess theories of multilayered plates for various bending problems, Compos. Struct., vol. 69, no. 3, pp. 271–293, 2005. DOI: 10.1016/j.compstruct.2004.07.003.
  • E. Carrera, A study of transverse normal stress effect on vibration of multilayered plates and shells, J Sound Vib., vol. 225, no. 5, pp. 803–829, 1999. DOI: 10.1006/jsvi.1999.2271.
  • A. Nosier, P.K.K. Kapania, and J.N. Reddy, Free vibration analysis of laminated plates using a layerwise theory, AIAA J., vol. 31, no. 12, pp. 2335–2346, 1993. DOI: 10.2514/3.11933.
  • S. Kapuria, P.C. Dumir, and N.K. Jain, Assessment of zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams, Compos. Struct., vol. 64, no. 3–4, pp. 317–327, 2004. DOI: 10.1016/j.compstruct.2003.08.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.