88
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

A reciprocal relation with application in the study of the dislocations

ORCID Icon, ORCID Icon & ORCID Icon
Pages 6330-6335 | Received 06 Jul 2021, Accepted 30 Aug 2021, Published online: 27 Sep 2021

References

  • A.K. Chatterjee and L. Knopoff, Crack breakout dynamics, Bull. Seismol. Soc. Am., vol. 80, no. 6, pp. 1571–1579, 1990.
  • E. Boschi and F. Mainardi, Body loadings in thermo-microstretch elastic solids, Geophys. J. R. Astr. Soc., vol. 34, no. 3, pp. 313–320, 1973. DOI: 10.1111/j.1365-246X.1973.tb02398.x.
  • S.C. Cowin, Bone poroelasticity, J. Biomech., vol. 32, no. 3, pp. 217–238, 1999. DOI: 10.1016/S0021-9290(98)00161-4.
  • M.A. Goodman and S.C. Cowin, A continuum theory for granular materials, Arch. Rational Mech. Anal., vol. 44, no. 4, pp. 249–266, 1972. DOI: 10.1007/BF00284326.
  • S.C. Cowin and J.W. Nunziato, Linear elastic materials with voids, J. Elasticity., vol. 13, no. 2, pp. 125–147, 1983. DOI: 10.1007/BF00041230.
  • J.W. Nunziato and S.C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Rational Mech. Anal., vol. 72, no. 2, pp. 175–201, 1979. DOI: 10.1007/BF00249363.
  • D. Iesan, A theory of thermoelastic materials with voids, Acta Mech., vol. 60, pp. 67–89, 1986.
  • R.D. Mindlin, Micro-structure in linear elasticity, Arch. Rational Mech. Anal., vol. 16, no. 1, pp. 51–78, 1964. DOI: 10.1007/BF00248490.
  • A.E. Green and R.S. Rivlin, Multipolar continuum mechanics, Arch. Rational Mech. Anal., vol. 17, no. 2, pp. 113–147, 1964. DOI: 10.1007/BF00253051.
  • E. Fried and M.E. Gurtin, Thermomechanics of the interface between a body and its environment, Continuum Mech. Thermodyn., vol. 19, no. 5, pp. 253–271, 2007. DOI: 10.1007/s00161-007-0053-x.
  • M. Marin, et al., Considerations on double porosity structure for micropolar bodies, AIP Adv., vol. 5, no. 3, pp. 037113, 2015. DOI: 10.1063/1.4914912.
  • I. Abbas and M. Marin, Analytical solutions of a two-dimensional generalized thermoelastic diffusions problem due to laser pulse, Iran. J. Sci. Technol. Trans. Mech. Eng., vol. 42, no. 1, pp. 57–71, 2018. DOI: 10.1007/s40997-017-0077-1.
  • T. Saeed, et al., A GL model on thermo-elastic interaction in a poroelastic material using finite element method, Symmetry, Basel, vol. 12, no. 3, pp. 488, 2020. DOI: 10.3390/sym12030488.
  • L. Zhang, L, et al., Entropy analysis on the blood flow through anisotropically tapered arteries filled with magnetic zinc-oxide (ZnO) nanoparticles, Entropy, vol. 22, no. 10, pp. 1070, 2020. DOI: 10.3390/e22101070.
  • M. Marin, Harmonic vibrations in thermoelasticity of microstretch materials, J. Vib. Acoust., vol. 132, no. 4, pp. 044501, 2010. DOI: 10.1115/1.4000971.
  • S. Vlase, A method of eliminating Lagrangian-multipliers from the equation of motion of interconnected mechanical systems, J. Appl. Mech. Trans. ASME., vol. 54, no. 1, pp. 235–237, 1987. DOI: 10.1115/1.3172969.
  • S. Vlase, et al., Elasto-dynamics of a solid with a general” rigid” motion using fem model. Part II. Aanalysis of a double cardan joint, Rom. J. Phys., vol. 58, no. 78, pp. 882–892, 2013.
  • K.C. Liu and S.M. Arnold, Influence of Scale Specific Features on the Progressive Damage of Woven Ceramic Matrix Composites (CMCs), CMC-Comput. Mater. Con., vol. 35, no. 1, pp. 35–65, 2013. DOI: 10.3970/cmc.2013.035.035.
  • C.S. Liu, and S.N. Atluri, Analysis of elastic-plastic waves in a thin-walled tube by a novel lie-group differential algebraic equations method, CMC- Comput. Mater. Cont., vol. 41, no. 1, pp. 1–36, 2014. DOI: 10.3970/cmc.2014.041.001.
  • D. Iesan, Thermoelastic Models of Continua, Kluwer Academic, Dordrecht, the Netherlands, 2004.
  • A.C. Eringen, Theory of thermo-microstretch elastic solids, Int. J. Engng. Sci., vol. 28, no. 12, pp. 1291–1301, 1990. DOI: 10.1016/0020-7225(90)90076-U.
  • R.J. Mora, and A.M. Waas, Evaluation of the Micropolar elasticity constants for honeycombs, Acta Mech., vol. 192, no. 1–4, pp. 1–16, 2007. DOI: 10.1007/s00707-007-0446-8.
  • L. Knopoff, J.A. Landoni, and M.S. Abinante, Dynamical model of an earthquake fault with localization, Phys. Rev. A., vol. 46, no. 12, pp. 7445–7449, 1992. DOI: 10.1103/physreva.46.7445.
  • A.T. Hoop, An elastodynamic reciprocity theorem for linear, viscoelastic media, Appl. Sci. Res., vol. 16, no. 1, pp. 39–52, 1966. DOI: 10.1007/BF00384053.
  • A.T. De Hoop, Handbook of Radiation, Academic Press, New York, NY, 1995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.