452
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Compressive fatigue characteristics of octet-truss lattices in different orientations

ORCID Icon, ORCID Icon & ORCID Icon
Pages 6390-6402 | Received 02 Aug 2021, Accepted 04 Sep 2021, Published online: 16 Sep 2021

References

  • V.S. Deshpande, M.F. Ashby, and N.A. Fleck, Foam topology: bending versus stretching dominated architectures, Acta Mater., vol. 49, no. 6, pp. 1035–1040, 2001. DOI: 10.1016/S1359-6454(00)00379-7.
  • R.B. Fuller, Octet truss, Patent Serial. No. 2 986 241, USA, 1961.
  • V.S. Deshpande, N.A. Fleck, and M.F. Ashby, Effective properties of the octet-truss lattice material, J. Mech. Phys. Solids, vol. 49, no. 8, pp. 1747–1769, 2001. DOI: 10.1016/S0022-5096(01)00010-2.
  • H. Gu, A. Shterenlikht, and M. Pavier, Brittle fracture of three-dimensional lattice structure, Eng. Fract. Mech., vol. 219, pp. 106598, 2019. DOI: 10.1016/j.engfracmech.2019.106598.
  • M.R. O’Masta, L. Dong, L. St-Pierre, H.N.G. Wadley, and V.S. Deshpande, The fracture toughness of octet-truss lattices, J. Mech. Phys. Solids, vol. 98, pp. 271–289, 2017. DOI: 10.1016/j.jmps.2016.09.009.
  • H. Gu, S. Li, M. Pavier, M.M. Attallah, C. Paraskevoulakos, and A. Shterenlikht, Fracture of three-dimensional lattices manufactured by selective laser melting, Int. J. Solids Struct., vol. 180–181, pp. 147–159, 2019. DOI: 10.1016/j.ijsolstr.2019.07.020.
  • Y. Li, H. Gu, M. Pavier, and H. Coules, Compressive behaviours of octet-truss lattices, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., vol. 234, no. 16, pp. 3257–3269, 2020. DOI: 10.1177/0954406220913586.
  • D. Qi, H. Yu, M. Liu, H. Huang, S. Xu, Y. Xia, G. Qian, W. Wu, Mechanical behaviors of SLM additive manufactured octet-truss and truncated-octahedron lattice structures with uniform and taper beams, Int. J. Mech. Sci., vol. 163, pp. 105091, 2019. DOI: 10.1016/j.ijmecsci.2019.105091.
  • S.A. Yavari, S.M. Ahmadi, R. Wauthle, B. Pouran, J. Schrooten, H. Weinans, A.A. Zadpoor, Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials, J. Mech. Behav. Biomed. Mater., vol. 43, pp. 91–100, 2015.
  • M. Jamshidinia, L. Wang, W. Tong, R. Ajlouni, and R. Kovacevic, Fatigue properties of a dental implant produced by electron beam melting®(EBM), J. Mater. Process. Technol., vol. 226, pp. 255–263, 2015. DOI: 10.1016/j.jmatprotec.2015.07.013.
  • S. Zhao, S.J. Li, W.T. Hou, Y.L. Hao, R. Yang, and R.D.K. Misra, The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting, J. Mech. Behav. Biomed. Mater., vol. 59, pp. 251–264, 2016.
  • ASTM D695-15, Standard Test Method for Compressive Properties of Rigid Plastics, ASTM International, West Conshohocken, PA, 2015.
  • Lite 600 product detail. [Online]. Available from http://www.uniontech3d.cn/product/detail/1679.
  • DSS SolidWorks. Dassault Systems. SolidWorks Corp, Concord, MA, 2016.
  • Dragonfly 2020.2. Object Research Systems (ORS) Inc., Montreal, Canada. Available from http://www.theobjects.com/dragonfly.
  • C. Abaqus, Analysis User’s Manual, Dassault Systèmes, USA, 2017.
  • H. Gu, M. Pavier, and A. Shterenlikht, Experimental study of modulus, strength and toughness of 2D triangular lattices, Int. J. Solids Struct., vol. 152–153, pp. 207–216, 2018. DOI: 10.1016/j.ijsolstr.2018.06.028.
  • S.J. Li, L.E. Murr, X.Y. Cheng, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, R.B. Wicker, Compression fatigue behavior of Ti–6Al–4V mesh arrays fabricated by electron beam melting, Acta Mater., vol. 60, no. 3, pp. 793–802, 2012. DOI: 10.1016/j.actamat.2011.10.051.
  • S.A. Yavari, R. Wauthle, J. van der Stok, A.C. Riemslag, M. Janssen, M. Mulier, J.P. Kruth, J. Schrooten, H. Weinans, A.A. Zadpoor, Fatigue behavior of porous biomaterials manufactured using selective laser melting, Mater. Sci. Eng. C, vol. 33, no. 8, pp. 4849–4858, 2013. DOI: 10.1016/j.msec.2013.08.006.
  • A.M. Makiyama, S. Vajjhala, and L.J. Gibson, Analysis of crack growth in a 3D Voronoi structure: a model for fatigue in low density trabecular bone, J. Biomech. Eng., vol. 124, no. 5, pp. 512–520, 2002. DOI: 10.1115/1.1503792.
  • J. Zhou and W.O. Soboyejo, Compression–compression fatigue of open cell aluminum foams: macro-/micro-mechanisms and the effects of heat treatment, Mater. Sci. Eng. A, vol. 369, no. 12, pp. 23–35, 2004. DOI: 10.1016/j.msea.2003.08.009.
  • Y. Sugimura, A. Rabiei, A.G. Evans, A.M. Harte, and N.A. Fleck, Compression fatigue of a cellular Al alloy, Mater. Sci. Eng. A, vol. 269, no. 1–2, pp. 38–48, 1999. DOI: 10.1016/S0921-5093(99)00147-1.
  • S. Zhao, S.J. Li, S.G. Wang, W.T. Hou, Y. Li, L.C. Zhang, Y.L. Hao, R. Yang, R.D.K. Misra, L.E. Murr, Compressive and fatigue behavior of functionally graded Ti-6Al-4V meshes fabricated by electron beam melting, Acta Mater., vol. 150, pp. 1–15, 2018. DOI: 10.1016/j.actamat.2018.02.060.
  • F. Li, J. Li, T. Huang, H. Kou, and L. Zhou, Compression fatigue behavior and failure mechanism of porous titanium for biomedical applications, J. Mech. Behav. Biomed. Mater., vol. 65, pp. 814–823, 2017.
  • N.W. Hrabe, P. Heinl, B. Flinn, C. Körner, and R.K. Bordia, Compression‐compression fatigue of selective electron beam melted cellular titanium (Ti‐6Al‐4V, J. Biomed. Mater. Res. Part B Appl. Biomater., vol. 99, no. 2, pp. 313–320, 2011.
  • A. Zargarian, M. Esfahanian, J. Kadkhodapour, and S. Ziaei-Rad, Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures, Mater. Sci. Eng. C, vol. 60, pp. 339–347, 2016. DOI: 10.1016/j.msec.2015.11.054.
  • L. Yang, C. Yan, W. Cao, Z. Liu, B. Song, S. Wen, C. Zhang, Y. Shi, S. Yang, Compression–compression fatigue behaviour of gyroid-type triply periodic minimal surface porous structures fabricated by selective laser melting, Acta Mater., vol. 181, pp. 49–66, 2019. DOI: 10.1016/j.actamat.2019.09.042.
  • C. Peng, P. Tran, H. Nguyen-Xuan, and A.J.M. Ferreira, Mechanical performance and fatigue life prediction of lattice structures: Parametric computational approach, Compos. Struct., vol. 235, pp. 111821, 2020. DOI: 10.1016/j.compstruct.2019.111821.
  • Y. Li, M.J. Pavier, and H. Coules, Fatigue properties of aluminium triangular lattice plates, Procedia Struct. Integrity, vol. 28, pp. 1148–1159, 2020. DOI: 10.1016/j.prostr.2020.11.096.
  • K.Y.G. McCullough, N.A. Fleck, and M.F. Ashby, The stress-life fatigue behaviour of aluminium alloy foams, Fatigue Fract. Eng. Mater. Struct., vol. 23, no. 3, pp. 199–208, 2000.
  • S.M. Bowman, X.E. Guo, D.W. Cheng, T.M. Keaveny, L.J. Gibson, W.C. Hayes, T.A. McMahon, Creep contributes to the fatigue behavior of bovine trabecular bone, J. Biomech. Eng., vol. 120, no. 5, pp. 647–654, 1998. DOI: 10.1115/1.2834757.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.