364
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Extracting material parameters of silicone elastomers under biaxial tensile tests using virtual fields method and investigating the effect of missing deformation data close to specimen edges on parameter identification

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 6421-6435 | Received 23 Jul 2021, Accepted 07 Sep 2021, Published online: 05 Oct 2021

References

  • D. Steck, J. Qu, S. B. Kordmahale, D. Tscharnuter, A. Muliana, and J. Kameoka, Mechanical responses of ecoflex silicone rubber: Compressible and incompressible behaviors, J. Appl. Polym. Sci., vol. 136, no. 5, p. 47025, 2019. DOI: 10.1002/app.47025.
  • O. A. Shergold, N. A. Fleck, and D. Radford, The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates, Int. J. Impact Eng., vol. 32, no. 9, pp. 1384–1402, 2006. DOI: 10.1016/j.ijimpeng.2004.11.010.
  • G. Machado, A. Stricher, G. Chagnon, and D. Favier, Mechanical behavior of architectured photosensitive silicone membranes: Experimental data and numerical analysis, Mech. Adv. Mater. Struct., vol. 24, no. 6, pp. 524–533, 2017. DOI: 10.1080/15376494.2016.1161096.
  • S. Angeli, C. Panayiotou, E. Psimolophitis, M. Nicolaou, and C. Constantinides, Uniaxial stress-strain characteristics of elastomeric membranes: Theoretical considerations, computational simulations, and experimental validation, Mech. Adv. Mater. Struct., vol. 22, no. 12, pp. 996–1006, 2015. DOI: 10.1080/15376494.2014.896960.
  • R. W. Ogden, G. Saccomandi, and I. Sgura, Fitting hyperelastic models to experimental data, Comput. Mech., vol. 34, no. 6, pp. 484–502, 2004. DOI: 10.1007/s00466-004-0593-y.
  • M. Fujikawa, N. Maeda, J. Yamabe, Y. Kodama, and M. Koishi, Determining stress–strain in rubber with in-plane biaxial tensile tester, Exp. Mech., vol. 54, no. 9, pp. 1639–1649, 2014. DOI: 10.1007/s11340-014-9942-7.
  • R. S. Rivlin and D. Saunders, Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci., vol. 243, no. 865, pp. 251–288, 1951.
  • M. N. Silberstein, P. V. Pillai, and M. C. Boyce, Biaxial elastic–viscoplastic behavior of nafion membranes, Polymer, vol. 52, no. 2, pp. 529–539, 2011. DOI: 10.1016/j.polymer.2010.11.032.
  • B. Yohsuke, K. Urayama, T. Takigawa, and K. Ito, Biaxial strain testing of extremely soft polymer gels, Soft Matter, vol. 7, no. 6, pp. 2632–2638, 2011. DOI: 10.1039/c0sm00955e.
  • X. Zhao, Z. Berwick, J. Krieger, H. Chen, S. Chambers, and G. S. Kassab, Novel design of cruciform specimens for planar biaxial testing of soft materials, Exp. Mech., vol. 54, no. 3, pp. 343–356, 2014. DOI: 10.1007/s11340-013-9808-4.
  • F. Q. Pancheri and L. Dorfmann, Strain-controlled biaxial tension of natural rubber: New experimental data, Rubber Chem. Technol., vol. 87, no. 1, pp. 120–138, 2014. DOI: 10.5254/rct.13.87902.
  • K. B. Putra, J. Plott, and A. J. Shih, Biaxial mooney-rivlin coefficient of silicone sheet by additive manufacturing, Procedia Cirp., vol. 65, pp. 189–195, 2017. DOI: 10.1016/j.procir.2017.04.049.
  • H. Seibert, T. Scheffer, and S. Diebels, Biaxial testing of elastomers, Tech. Mech. Sci. J. Fund. Appl. Eng. Mech., vol. 34, no. 2, pp. 72–89, 2014.
  • J. Blaber, B. Adair, and A. Antoniou, Ncorr: Open-source 2D digital image correlation MATLAB software, Exp. Mech., vol. 55, no. 6, pp. 1105–1122, 2015. DOI: 10.1007/s11340-015-0009-1.
  • J. J. Hu, G. W. Chen, Y. C. Liu, and S.-S. Hsu, Influence of specimen geometry on the estimation of the planar biaxial mechanical properties of cruciform specimens, Exp. Mech., vol. 54, no. 4, pp. 615–631, 2014. DOI: 10.1007/s11340-013-9826-2.
  • M. Jiang, R. L. Sridhar, A. B. Robbins, A. D. Freed, and M. R. Moreno, A versatile biaxial testing platform for soft tissues, J. Mech. Behav. Biomed. Mater., vol. 114, p. 104144, 2020. DOI: 10.1016/j.jmbbm.2020.104144.
  • S. Jemiolo, Instability of a square sheet of rubberlike material under symmetric biaxial stretching, IOP Conf. Ser. Mater. Sci. Eng., vol. 661, p. 012031, 2019. DOI: 10.1088/1757-899X/661/1/012031.
  • G. Schubert and P. Harrison, Equi-biaxial tension tests on magneto-rheological elastomers, Smart Mater. Struct., vol. 25, no. 1, p. 015015, 2016. DOI: 10.1088/0964-1726/25/1/015015.
  • J. E. Ribeiro, H. Lopes, P. Martins, and M. Braz-César, Mechanical analysis of PDMS material using biaxial test, AIMS Mater. Sci., vol. 6, no. 1, pp. 97–110, 2019. DOI: 10.3934/matersci.2019.1.97.
  • L. Chevalier, S. Calloch, F. Hild, and Y. Marco, Digital image correlation used to analyze the multiaxial behavior of rubber-like materials, Eur. J. Mech. A/Solids., vol. 20, no. 2, pp. 169–187, 2001. DOI: 10.1016/S0997-7538(00)01135-9.
  • M. Sacks, A method for planar biaxial mechanical testing that includes in-plane shear, J. Biomech. Eng., vol. 121, no. 5, pp. 551–555, 1999. DOI: 10.1115/1.2835086.
  • J. S. Grashow, A. P. Yoganathan, and M. S. Sacks , Biaixal stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates, Ann. Biomed. Eng., vol. 34, no. 2, pp. 315–325, 2006. DOI: 10.1007/s10439-005-9027-y.
  • S. D. Waldman and J. M. Lee, Effect of sample geometry on the apparent biaxial mechanical behaviour of planar connective tissues, Biomaterials., vol. 26, no. 35, pp. 7504–7513, 2005. DOI: 10.1016/j.biomaterials.2005.05.056.
  • D. Nolan and J. McGarry, On the correct interpretation of measured force and calculation of material stress in biaxial tests, J. Mech. Behav. Biomed. Mater., vol. 53, pp. 187–199, 2016. DOI: 10.1016/j.jmbbm.2015.08.019.
  • M. Cilla, A. Corral, J. Peña, and E. Peña, Analysis of the accuracy on computing nominal stress in a biaxial test for arteries, Strain, vol. 56, no. 1, p. e12331, 2020. DOI: 10.1111/str.12331.
  • W. Sun, M. S. Sacks, and M. J. Scott, Effects of boundary conditions on the estimation of the planar biaxial mechanical properties of soft tissues, J. Biomech. Eng., vol. 127, no. 4, pp. 709–715, 2005. DOI: 10.1115/1.1933931.
  • N. T. Jacobs, D. H. Cortes, E. J. Vresilovic, and D. M. Elliott, Biaxial tension of fibrous tissue: Using finite element methods to address experimental challenges arising from boundary conditions and anisotropy, Trans. ASME J. Biomech. Eng., vol. 135, no. 2, p. 021004, 2013. DOI: 10.1115/1.4023503.
  • M. Johlitz and S. Diebels, Characterisation of a polymer using biaxial tension tests. Part I: Hyperelasticity, Arch. Appl. Mech., vol. 81, no. 10, pp. 1333–1349, 2011. DOI: 10.1007/s00419-010-0480-1.
  • A. Avanzini and D. Battini, Integrated experimental and numerical comparison of different approaches for planar biaxial testing of a hyperelastic material, Adv. Mater. Sci. Eng., vol. 2016, pp. 1–12, 2016. DOI: 10.1155/2016/6014129.
  • R. Simon-Allue, A. Cordero, and E. Pena, Unraveling the effect of boundary conditions and strain monitoring on estimation of the constitutive parameters of elastic membranes by biaxial tests, Mech. Res. Commun., vol. 57, pp. 82–89, 2014. DOI: 10.1016/j.mechrescom.2014.01.009.
  • F. Pierron and M. Grédiac, The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-Field Deformation Measurements. Springer-Verlag New York: Springer Science & Business Media, 2012.
  • M. Grédiac and F. Pierron, AT-shaped specimen for the direct characterization of orthotropic materials, Int. J. Numer. Methods Eng., vol. 41, no. 2, pp. 293–309, 1998. DOI: 10.1002/(SICI)1097-0207(19980130)41:2<293::AID-NME284>3.0.CO;2-Y.
  • L. Jiang, B. Guo, and H. Xie, Identification of the elastic stiffness of composites using the virtual fields method and digital image correlation, Acta Mech. Sin., vol. 31, no. 2, pp. 173–180, 2015. DOI: 10.1007/s10409-015-0410-0.
  • X. Dai and H. Xie, Constitutive parameter identification of 3D printing material based on the virtual fields method, Measurement, vol. 59, pp. 38–43, 2015. DOI: 10.1016/j.measurement.2014.09.033.
  • Q. Cao, Y. Li, and H. Xie, Orientation-identified virtual fields method combined with moiré interferometry for mechanical characterization of single crystal Ni-based superalloys, Opt. Lasers Eng., vol. 125, p. 105854, 2020. DOI: 10.1016/j.optlaseng.2019.105854.
  • H. Jiang, Z. Lei, R. Bai, W. Wu, D. Liu, Z. Guo, C. Yan, H. Dong, and M. Li, Identifying elasto-plastic damage coupling model of laser-welded aluminum alloy by virtual field method and digital image correlation, Opt. Laser Technol., vol. 129, p. 106268, 2020. DOI: 10.1016/j.optlastec.2020.106268.
  • J. Martins, A. Andrade-Campos, and S. Thuillier, Calibration of anisotropic plasticity models using a biaxial test and the virtual fields method, Int. J. Solids Struct., vol. 172-173, pp. 21–37, 2019. DOI: 10.1016/j.ijsolstr.2019.05.019.
  • N. A. Kazerooni, Z. Wang, A. Srinivasa, and J. C. Criscione, Inferring material parameters from imprecise experiments on soft materials by virtual fields method, Ann. Solid Struct. Mech., vol. 12, no. 1-2, pp. 59–72, 2020. DOI: 10.1007/s12356-020-00062-8.
  • N. Promma, B. Raka, M. Grediac, E. Toussainta, J.-B. Le Cam, X. Balandraud, and F. Hild, Application of the virtual fields method to mechanical characterization of elastomeric materials, Int. J. Solids Struct., vol. 46, no. 3-4, pp. 698–715, 2009. DOI: 10.1016/j.ijsolstr.2008.09.025.
  • M. Rossi, P. Lava, F. Pierron, D. Debruyne, and M. Sasso, Effect of DIC spatial resolution, noise and interpolation error on identification results with the VFM, Strain, vol. 51, no. 3, pp. 206–222, 2015. DOI: 10.1111/str.12134.
  • M. Baconnais, J. Réthoré, and M. François, Improvement of the digital image correlation close to the borders of an object, Strain, vol. 56, no. 3, p. e12340, 2020. DOI: 10.1111/str.12340.
  • Y. Li, J. Li, Q. Duan, H. Xie, and S. Liu, Characterization of material mechanical properties using strain correlation method combined with virtual fields method, Acta Mech. Sin., vol. 37, no. 3, pp. 456–471, 2021. DOI: 10.1007/s10409-020-01014-6.
  • E. M. Jones, K. N. Karlson, and P. L. Reu, Investigation of assumptions and approximations in the virtual fields method for a viscoplastic material model, Strain, vol. 55, no. 4, p. e12309, 2019. DOI: 10.1111/str.12309.
  • A. Graham and C. Siviour, Characterising the frequency-response of ultra-soft polymers with the virtual fields method, Strain, vol. 57, no. 5, pp. e12386, 2021. DOI: 10.1111/str.12386.
  • G. Seon, A. Makeev, J. D. Schaefer, and B. Justusson, Measurement of interlaminar tensile strength and elastic properties of composites using open-hole compression testing and digital image correlation, Appl. Sci., vol. 9, no. 13, pp. 2647, 2019. DOI: 10.3390/app9132647.
  • Z. Zhang, B. Pan, M. Grédiac, and W. Song, Accuracy-enhanced constitutive parameter identification using virtual fields method and special stereo-digital image correlation, Opt. Lasers Eng., vol. 103, pp. 55–64, 2018. DOI: 10.1016/j.optlaseng.2017.11.016.
  • G. Valeri, B. Koohbor, A. Kidane, and M. A. Sutton, Determining the tensile response of materials at high temperature using DIC and the virtual fields method, Opt. Lasers Eng., vol. 91, pp. 53–61, 2017. DOI: 10.1016/j.optlaseng.2016.11.004.
  • M. Grediac, F. Pierron, S. Avril, and E. Toussaint, The virtual fields method for extracting constitutive parameters from full-field measurements: A review, Strain, vol. 42, no. 4, pp. 233–253, 2006. DOI: 10.1111/j.1475-1305.2006.00283.x.
  • J. H. Kim, A. Serpantié, F. Barlat, F. Pierron, and M.-G. Lee, Characterization of the post-necking strain hardening behavior using the virtual fields method, Int. J. Solids Struct., vol. 50, no. 24, pp. 3829–3842, 2013. DOI: 10.1016/j.ijsolstr.2013.07.018.
  • A. Marek, F. M. Davis, and F. Pierron, Sensitivity-based virtual fields for the non-linear virtual fields method, Comput. Mech., vol. 60, no. 3, pp. 409–431, 2017. DOI: 10.1007/s00466-017-1411-6.
  • A. Tayeb, J. B. Le Cam, M. Grédiac, E. Toussaint, E. Robin, X. Balandraud, and F. Canévet, Identifying hyperelastic constitutive parameters with sensitivity-based virtual fields, Strain, pp. e12397, 2021. DOI: 10.1111/str.12397.
  • P. Lava, J. Furmanski, A. Marek, F. M. Davis, and F. Pierron, Evaluation of sensitivity-based virtual fields for non-linear parameter identification including DIC filtering effects. In: Residual Stress, Thermomechanics & Infrared Imaging and Inverse Problems, vol. 6. Springer, pp. 153–156, 2020.
  • J. H. Kim, F. Barlat, F. Pierron, and M.-G. Lee, Determination of anisotropic plastic constitutive parameters using the virtual fields method, Exp. Mech., vol. 54, no. 7, pp. 1189–1204, 2014. DOI: 10.1007/s11340-014-9879-x.
  • International Digital Image Correlation Society, E. M. C. Jones, and M. A. Iadicola, A Good Practices Guide for Digital Image Correlation, 2018. DOI: 10.32720/idics/gpg.ed1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.