231
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Finite element method for axial and bending coupling effect on free vibration response of functionally graded beams under thermal environment

, , &
Pages 6436-6450 | Received 28 Jul 2021, Accepted 07 Sep 2021, Published online: 29 Sep 2021

References

  • J. N. Reddy, A simple higher-order theory of laminated composite plate, J Appl. Mech., vol. 51, no. 4, pp. 745–752, 1984. DOI: 10.1115/1.3167719.
  • M. Touratier, An efficient standard plate theory, Int. J. Eng. Sci., vol. 29, no. 8, pp. 901–916, 1991. DOI: 10.1016/0020-7225(91)90165-Y.
  • K. S. Afaq, M. Karama, and S. Mistou, Un nouveau modèle raffiné pour les structure smulticouches. In Comptes rendues des 13éme journées nationales sur les composites, Strasbourg, 2003, pp. 289–292.
  • M. K. Rao, and Y. M. Desai, Analytical solution for vibrations of laminated and sandwich plates, Compos. Struct., vol. 63, no. 3–4, pp. 361–373, 2004. DOI: 10.1016/S0263-8223(03)00185-5.
  • M. K. RaO, K. Scherbatiuk, Y. M. Deesai, and A. H. Shah, Natural vibrations of laminated and sandwich plates, J. Eng. Mech., vol. 130, no. 11, pp. 1268–1278, 2004. DOI: 10.1061/(ASCE)0733-9399(2004)130:11(1268).
  • S. Kapuria, P. C. Dumir, and N. K. Jain, Assessment of zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams, Compos. Struct., vol. 64, no. 3–4, pp. 317–327, 2004. DOI: 10.1016/j.compstruct.2003.08.013.
  • H. Youzera, S. A. Meftah, N. Challamel, and A. Tounsi, Nonlinear damping and forced vibration analysis of laminated composite beams, Compos. Part B. Eng., vol. 43, no. 3, pp. 1147–1154, 2012. DOI: 10.1016/j.compositesb.2012.01.008.
  • M. Koizumi, FGM activities in Japan, Compos. Part B. Eng., vol. 28, no. 1–2, pp. 1–4, 1997. DOI: 10.1016/S1359-8368(96)00016-9.
  • J. J. Sobczak, and L. Drenchev, Metallic functionally graded materials: a specific class of advanced composites, Mater. Sci. Technol., vol. 29, no. 4, pp. 297–316, 2013. DOI: 10.1016/j.jmst.2013.02.006.
  • K. Koutoati, F. Mohri, and E. M. Daya, Finite element approach of axial bending coupling on static and vibration behaviors of functionally graded material sandwich beams, Mech. Adv. Mater. Struct., vol. 28, no. 15, pp. 1537–1553, 2021. DOI: 10.1080/15376494.2019.1685144.
  • A. I. Aria, T. Rabczuk, and M. I. Friswell, A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams, Eur. J. Mech. A., Solids, vol. 77, pp. 103767, 2019. DOI: 10.1016/j.euromechsol.2019.04.002.
  • H. M. Zhou, X. M. Zhang, and Z. Y. Wang, Thermal analysis of 2D FGM beam subjected to thermal loading using meshless weighted least-square method, Math. Prob. Eng., vol. 2019, pp. 1–10, 2019. DOI: 10.1155/2019/2541707.
  • Y. Chen, G. Jin, C. Zhang, T. Ye, and Y. Xue, Thermal vibration of FGM beams with general boundary conditions using a higher-order shear deformation theory, Compos. Part B. Eng., vol. 153, pp. 376–386, 2018. DOI: 10.1016/j.compositesb.2018.08.111.
  • N. Wattanasakulpong, and V. Ungbhakorn, Linear and nonlinear vibration analysis of elastically restrained endsP FGM beams with porosities, Aerosp. Sci. Technol., vol. 32, no. 1, pp. 111–120, 2014. DOI: 10.1016/j.ast.2013.12.002.
  • M. Şimşek, Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions, Compos. Struct., vol. 149, pp. 304–314, 2016. DOI: 10.1016/j.compstruct.2016.04.034.
  • S. Pandey, and S. Pradyumna, Stress analysis of functional graded sandwich beams subjected to thermal shock, Proc. Eng., vol. 173, pp. 837–843, 2017. DOI: 10.1016/j.proeng.2016.12.121.
  • D. K. Nguyen, and V. T. Bui, Dynamic analysis of functionally graded Timoshenko beams in thermal environment using a higher-order hierarchical beam element, Math. Prob. Eng., vol. 2017, pp. 1–12, 2017. DOI: 10.1155/2017/7025750.
  • S. Li, H. Su, and C. Cheng, Free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment, Appl. Math. Mech. Engl. Ed., vol. 30, no. 8, pp. 969–982, 2009. DOI: 10.1007/s10483-009-0803-7.
  • Ş. D. Akbaş, Thermal effects on the vibration of functionally graded deep beams with porosity, Int. J. Appl. Mech., vol. 9, no. 5, pp. 1750076, 2017. DOI: 10.1142/S1758825117500764.
  • F. Ebrahimi, and A. Jafari, A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities, J. Eng., vol. 2016, pp. 1–20, 2016. DOI: 10.1155/2016/9561504.
  • I. Eshraghi, S. Dag, and N. Soltani, Bending and free vibrations of functionally graded annular and circular micro-plates under thermal loading, Compos. Struct., vol. 137, pp. 196–207, 2016. DOI: 10.1016/j.compstruct.2015.11.024.
  • R. Aghazadeh, S. Dag, and E. Cigeroglu, Thermal effect on bending, buckling and free vibration of functionally graded rectangular micro-plates possessing a variable length scale parameter, Microsyst. Technol., vol. 24, no. 8, pp. 3549–3572, 2018. DOI: 10.1007/s00542-018-3773-x.
  • H.-S. Shen, and Z.-X. Wang, Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments, Int. J. Mech. Sci., vol. 81, pp. 195–206, 2014. DOI: 10.1016/j.ijmecsci.2014.02.020.
  • R. Javaheri, and M. R. Eslami, Thermal buckling of functionally graded plates based on higher order theory, J. Therm. Stresses, vol. 25, no. 7, pp. 603–625, 2002. DOI: 10.1080/01495730290074333.
  • P. Malekzadeh, and S. M. Monajjemzadeh, Dynamic response of functionally graded beams in a thermal environment under a moving load, Mech. Adv. Mater. Struct., vol. 23, no. 3, pp. 248–258, 2016. DOI: 10.1080/15376494.2014.949930.
  • H. Youzera, S. A. Meftah, and E. M. Daya, Superharmonic resonance of cross-ply laminates by the method of multiple scales, J. Comput. Nonlinear Dynam., vol. 12, no. 5, pp. 5, 2017. DOI: 10.1115/1.4036914.
  • P. Shi, C. Dong, F. Sun, W. Liu, and Q. Hu, A new higher order shear deformation theory for static, vibration and buckling responses of laminated plates with the isogeometric analysis, Compos. Struct., vol. 204, pp. 342–358, 2018. DOI: 10.1016/j.compstruct.2018.07.080.
  • M. Şimşek, Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories, Nucl. Eng. Des., vol. 240, no. 4, pp. 697–705, 2010. DOI: 10.1016/j.nucengdes.2009.12.013.
  • C. T. Luan, T. P. Vo, H. T. Thai, and T. K. Nguyen, An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads, Compos. Part B. Eng., vol. 100, pp. 152–163, 2016. DOI: 10.1016/j.compositesb.2016.06.067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.