77
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A correlated likelihood function for Bayesian model calibration to harness gradient information

, &
Pages 6477-6484 | Received 07 Sep 2021, Accepted 09 Sep 2021, Published online: 09 Dec 2021

References

  • T. Bhattacharjee, M. Barlingay, H. Tasneem, E. Roan, and K. Vemaganti, Cohesive zone modeling of mode I tearing in thin soft materials, J. Mech. Behav. Biomed. Mater., vol. 28, pp. 37–46, 2013. DOI: 10.1016/j.jmbbm.2013.07.015.
  • M. Carboni, G. Desch, and H. Weizsäcker, Passive mechanical properties of porcine left circumflex artery and its mathematical description, Med. Eng. Phys., vol. 29, no. 1, pp. 8–16, 2007. DOI: 10.1016/j.medengphy.2006.01.004.
  • C. Chai et al., Local axial compressive mechanical properties of human carotid atherosclerotic plaques-characterisation by indentation test and inverse finite element analysis, J. Biomech., vol. 46, no. 10, pp. 1759–1766, 2013. DOI: 10.1016/j.jbiomech.2013.03.017.
  • L. A. Mihai, S. Budday, G. A. Holzapfel, E. Kuhl, and A. Goriely, A family of hyperelastic models for human brain tissue, J. Mech. Phys. Solids, vol. 106, pp. 60–79, 2017. DOI: 10.1016/j.jmps.2017.05.015.
  • K. Miller and K. Chinzei, Mechanical properties of brain tissue in tension, J. Biomech., vol. 35, no. 4, pp. 483–490, 2002. DOI: 10.1016/S0021-9290(01)00234-2.
  • E. Roan and K. Vemaganti, The nonlinear material properties of liver tissue determined from no-slip uniaxial compression experiments, J. Biomech. Eng., vol. 129, no. 3, pp. 450–456, 2007. DOI: 10.1115/1.2720928.
  • E. Samur, M. Sedef, C. Basdogan, L. Avtan, and O. Duzgun, A robotic indenter for minimally invasive measurement and characterization of soft tissue response, Med. Image Anal., vol. 11, no. 4, pp. 361–373, 2007. DOI: 10.1016/j.media.2007.04.001.
  • G. Z. Voyiadjis and A. Samadi-Dooki, Hyperelastic modeling of the human brain tissue: Effects of no-slip boundary condition and compressibility on the uniaxial deformation, J. Mech. Behav. Biomed. Mater., vol. 83, pp. 63–78, 2018. DOI: 10.1016/j.jmbbm.2018.04.011.
  • R. Ogden, G. Saccomandi, and I. Sgura, Fitting hyperelastic models to experimental data, Comput. Mech., vol. 34, no. 6, pp. 484–502, 2004. DOI: 10.1007/s00466-004-0593-y.
  • P. T. Brewick and K. Teferra, Uncertainty quantification for constitutive model calibration of brain tissue, J. Mech. Behav. Biomed. Mater., vol. 85, pp. 237–255, 2018. DOI: 10.1016/j.jmbbm.2018.05.037.
  • S. Doraiswamy and A. R. Srinivasa, A bayesian approach to accounting for variability in mechanical properties in biomaterials, arXiv preprint arXiv:1312.2856v1 [q-bio.TO], 2013.
  • S. Madireddy, B. Sista, and K. Vemaganti, A Bayesian approach to selecting hyperelastic constitutive models of soft tissue, Comput. Methods Appl. Mech. Eng., vol. 291, pp. 102–122, 2015. DOI: 10.1016/j.cma.2015.03.012.
  • S. Madireddy, B. Sista, and K. Vemaganti, Bayesian calibration of hyperelastic constitutive models of soft tissue, J. Mech. Behav. Biomed. Mater., vol. 59, pp. 108–127, 2016. DOI: 10.1016/j.jmbbm.2015.10.025.
  • J. Zhang, M. Shields, and S. TerMaath, Probabilistic modeling and prediction of out-of-plane unidirectional composite lamina properties, Mech. Adv. Mater. Struct., vol. 28, no. 22, pp. 2310–2326, 2020. DOI: 10.1080/15376494.2020.1733713.
  • D. Silvia and J. Skilling, Data Analysis: A Bayesian Tutorial, 2nd Edition, Oxfored University Press Inc. New York, 2006.
  • S. Doraiswamy, J. C. Criscione, and A. R. Srinivasa, A technique for the classification of tissues by combining mechanics based models with Bayesian inference, Int. J. Eng. Sci., vol. 106, pp. 95–109, 2016. DOI: 10.1016/j.ijengsci.2016.04.002.
  • S. Budday et al., Mechanical characterization of human brain tissue, Acta Biomater., vol. 48, pp. 319–340, 2017. DOI: 10.1016/j.actbio.2016.10.036.
  • R. W. Ogden, Large deformation isotropic elasticity - On the correlation of theory and experiment for incompressible rubberlike solids, Rubber Chem. Technol., vol. 46, no. 2, pp. 398–416, 1973. DOI: 10.5254/1.3542910.
  • F. Feroz and M. P. Hobson, Multimodal nested sampling: An efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses, Monthly Notices R Astronom Soc., vol. 384, no. 2, pp. 449–463, 2008. arXiv:0704.3704v3 DOI: 10.1111/j.1365-2966.2007.12353.x.
  • F. Feroz, M. Hobson, and M. Bridges, MultiNest: An efficient and robust Bayesian inference tool for cosmology and particle physics, Monthly Notices R Astronom Soc., vol. 398, no. 4, pp. 1601–1614, 2009. DOI: 10.1111/j.1365-2966.2009.14548.x.
  • F. Feroz, M. P. Hobson, E. Cameron, and A. N. Pettitt, Importance nested sampling and the multinest algorithm, arXiv Preprints arXiv:1306.2144 [astro-ph.IM], 2019. DOI: 10.21105/astro.1306.2144.
  • J. Buchner et al., X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue, A&A, vol. 564, pp. A125, 2014. DOI: 10.1051/0004-6361/201322971.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.