181
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

An iterative residual-based procedure for solving coupled elastoplastic damage problems

, &
Pages 6485-6494 | Received 25 Jun 2021, Accepted 12 Sep 2021, Published online: 15 Oct 2021

References

  • L. Kachanov, On the rupture time under the condition of creep, Izv. Akad. Nauk. SSSR, Otd. Tekh. Nauk., vol. 8, pp. 26, 1958.
  • J.-L. Chaboche, Anisotropic creep damage in the framework of continuum damage mechanics, Nucl. Eng. Des., vol. 79, no. 3, pp. 309–319, 1984.
  • J. Lemaitre, How to use damage mechanics, Nucl. Eng. Des., vol. 80, no. 2, pp. 233–245, 1984. DOI: 10.1016/0029-5493(84)90169-9.
  • J. Lemaitre, Coupled elasto-plasticity and damage constitutive equations, Comput. Methods Appl. Mech. Eng., vol. 51, no. 1–3, pp. 31–49, 1985. DOI: 10.1016/0045-7825(85)90026-X.
  • J. Lemaitre, Micro-mechanics of crack initiation, Int. J. Fract., vol. 42, no. 1, pp. 87–99, 1990. DOI: 10.1007/BF00018615.
  • J. Lemaitre, A Course on Damage Mechanics, Springer-Verlag Berlin Heidelberg: Springer Science & Business Media, 2012.
  • J. Lemaitre, R. Desmorat, and M. Sauzay, Anisotropic damage law of evolution, Eur. J. Mech.-A/Solids, vol. 19, no. 2, pp. 187–208, 2000. DOI: 10.1016/S0997-7538(00)00161-3.
  • J. Lemaitre, Handbook of Materials Behavior Models, Three-Volume Set: Nonlinear Models and Properties, Academic Press USA: Elsevier, 2001.
  • A. L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media, J. Mater. Technol., vol. 99, no. 1, pp. 2–15, 1977. DOI: 10.1115/1.3443401.
  • A. Needleman and V. Tvergaard, An analysis of ductile rupture in notched bars, J. Mech. Phys. Solids, vol. 32, no. 6, pp. 461–490, 1984. DOI: 10.1016/0022-5096(84)90031-0.
  • G. R. Johnson and W. H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech., vol. 21, no. 1, pp. 31–48, 1985. DOI: 10.1016/0013-7944(85)90052-9.
  • J. Lemaitre and J.-L. Chaboche, Mechanics of Solid Materials, Cambridge: Cambridge University Press, 1994.
  • M. Brünig, An anisotropic ductile damage model based on irreversible thermodynamics, Int. J. Plast., vol. 19, no. 10, pp. 1679–1713, 2003. DOI: 10.1016/S0749-6419(02)00114-6.
  • M. Brünig, O. Chyra, D. Albrecht, L. Driemeier, and M. Alves, A ductile damage criterion at various stress triaxialities, Int. J. Plast., vol. 24, no. 10, pp. 1731–1755, 2008. DOI: 10.1016/j.ijplas.2007.12.001.
  • L. Xue and T. Wierzbicki, Ductile fracture initiation and propagation modeling using damage plasticity theory, Eng. Fract. Mech., vol. 75, no. 11, pp. 3276–3293, 2008. DOI: 10.1016/j.engfracmech.2007.08.012.
  • J. Lemaitre, A continuous damage mechanics model for ductile fracture, J. Eng. Mater., vol. 107, no. 1, pp. 83–89, 1985. DOI: 10.1115/1.3225775.
  • M. Mashayekhi, S. Ziaei-Rad, J. Parvizian, J. Niklewicz, and H. Hadavinia, Ductile crack growth based on damage criterion: Experimental and numerical studies, Mech. Mater., vol. 39, no. 7, pp. 623–636, 2007. DOI: 10.1016/j.mechmat.2006.10.004.
  • A. Benallal, R. Billardon, and I. Doghri, An integration algorithm and the corresponding consistent tangent operator for fully coupled elastoplastic and damage equations, Commun. Appl. Numer. Methods, vol. 4, no. 6, pp. 731–740, 1988. DOI: 10.1002/cnm.1630040606.
  • I. Doghri, Numerical implementation and analysis of a class of metal plasticity models coupled with ductile damage, Int. J. Numer. Methods Eng., vol. 38, no. 20, pp. 3403–3431, 1995. DOI: 10.1002/nme.1620382004.
  • M. Vaz, Jr and D. R. J. Owen, Numerical simulation of metal cutting using ductile fracture concepts, Conference: 5th ACME Annual Conference at London, UK, 1997.
  • M. Vaz, Jr and J. D. Bressan, A computational approach to blanking processes, J. Mater. Process. Technol., vol. 125, pp. 206–212, 2002.
  • E. A. de Souza Neto, D. Perić, and D. R. J. Owen, Continuum modelling and numerical simulation of material damage at finite strains, Arch. Comput. Methods Eng., vol. 5, no. 4, pp. 311–384, 1998. DOI: 10.1007/BF02905910.
  • P. Steinmann, C. Miehe, and E. Stein, Comparison of different finite deformation inelastic damage models within multiplicative elastoplasticity for ductile materials, Comput. Mech., vol. 13, no. 6, pp. 458–474, 1994. DOI: 10.1007/BF00374241.
  • A. K. Singh and P. Pandey, An implicit integration algorithm for plane stress damage coupled elastoplasticity, Mech. Res. Commun., vol. 26, no. 6, pp. 693–700, 1999. DOI: 10.1016/S0093-6413(99)00080-4.
  • E. A. de Souza Neto, Fast, one‐equation integration algorithm for the Lemaitre ductile damage model, Commun. Numer. Meth. Eng., vol. 18, no. 8, pp. 541–554, 2002. DOI: 10.1002/cnm.511.
  • J. C. Simo and R. L. Taylor, Consistent tangent operators for rate-independent elastoplasticity, Comput. Methods Appl. Mech. Eng., vol. 48, no. 1, pp. 101–118, 1985. DOI: 10.1016/0045-7825(85)90070-2.
  • F. A. Pires, E. A. de Souza Neto, and D. R. J. Owen, On the finite element prediction of damage growth and fracture initiation in finitely deforming ductile materials, Comput. Methods Appl. Mech. Eng., vol. 193, no. 48–51, pp. 5223–5256, 2004. DOI: 10.1016/j.cma.2004.01.038.
  • M. Mashayekhi, S. Ziaei-Rad, J. Parvizian, K. Nikbin, and H. Hadavinia, Numerical analysis of damage evolution in ductile solids, Struct. Durab. Health Monitor., vol. 1, no. 1, pp. 67–82, 2005.
  • M. Vaz, Jr, P. Muñoz-Rojas, and M. Lange, Damage evolution and thermal coupled effects in inelastic solids, Int. J. Mech. Sci., vol. 53, no. 5, pp. 387–398, 2011. DOI: 10.1016/j.ijmecsci.2011.03.001.
  • M. Mashayekhi, N. Torabian, and M. Poursina, Continuum damage mechanics analysis of strip tearing in a tandem cold rolling process, Simul. Modell. Pract. Theory, vol. 19, no. 2, pp. 612–625, 2011. DOI: 10.1016/j.simpat.2010.10.003.
  • M. Ranjbar, M. Mashayekhi, J. Parvizian, A. Düster, and E. Rank, Using the finite cell method to predict crack initiation in ductile materials, Comput. Mater. Sci., vol. 82, pp. 427–434, 2014. DOI: 10.1016/j.commatsci.2013.10.012.
  • S.-K. Kim, J.-H. Kim, J.-H. Kim, and J.-M. Lee, Numerical model for mechanical nonlinearities of high manganese steel based on the elastoplastic damage model, Metals, vol. 8, no. 9, pp. 680, 2018. DOI: 10.3390/met8090680.
  • F. X. Andrade, F. A. Pires, J. C. de Sá, and L. Malcher, Improvement of the numerical prediction of ductile failure with an integral nonlocal damage model, Int. J. Mater. Form., vol. 2, no. S1, pp. 439–442, 2009. DOI: 10.1007/s12289-009-0523-8.
  • F. Andrade, J. César de Sá, and F. Andrade Pires, A ductile damage nonlocal model of integral-type at finite strains: Formulation and numerical issues, Int. J. Damage Mech., vol. 20, no. 4, pp. 515–557, 2011. DOI: 10.1177/1056789510386850.
  • F. Andrade, J. C. de Sá, and F. A. Pires, Assessment and comparison of non-local integral models for ductile damage, Int. J. Damage Mech., vol. 23, no. 2, pp. 261–296, 2014. DOI: 10.1177/1056789513493103.
  • C. Bordreuil and C. Hochard, Finite element computation of woven ply laminated composite structures up to rupture, Appl. Compos. Mater., vol. 11, no. 3, pp. 127–143, 2004. DOI: 10.1023/B:ACMA.0000026474.67067.b6.
  • P. Sharma and S. S. Mulay, Damage modeling of unidirectional laminated composites, Mech. Adv. Mater. Struct., vol. 26, no. 1, pp. 93–99, 2019. DOI: 10.1080/15376494.2018.1534173.
  • A. S. Nasab and M. Mashayekhi, Application of an efficient anisotropic damage model to the prediction of the failure of metal forming processes, Int. J. Damage Mech., vol. 28, no. 10, pp. 1556–1579, 2019. DOI: 10.1177/1056789519833726.
  • M. Tavoosi, M. Sharifian, and M. Sharifian, Updating stress and the related elastoplastic parameters for Lemaitre damage model, Iran. J. Sci. Technol. Trans. Mech. Eng., vol. 44, no. 3, pp. 647–659, 2020. DOI: 10.1007/s40997-019-00282-3.
  • M. Tavoosi, M. Sharifian, and M. Sharifian, A cross integration for von Mises plasticity along with nonlinear isotropic hardening and Lemaitre damage model, Iran. J. Sci. Technol. Trans. Mech. Eng., vol. 44, pp. 647–659, 2020. DOI: 10.1007/s40997-020-00404-2.
  • M. Wójcik and A. Skrzat, Identification of Chaboche–Lemaitre combined isotropic–kinematic hardening model parameters assisted by the fuzzy logic analysis, Acta Mech., vol. 232, no. 2, pp. 685–708, 2021. DOI: 10.1007/s00707-020-02851-z.
  • Y. Jasra, S. Singhal, R. Upman, and R. K. Saxena, Finite element simulation of stress corrosion cracking in austenitic stainless steel using modified Lemaitre damage model, Mater. Today Proc., vol. 26, pp. 2:2314–2322, 2020. DOI: 10.1016/j.matpr.2020.02.499.
  • M. Aghaei and S. Ziaei-Rad, A micro mechanical study on DP600 steel under tensile loading using Lemaitre damage model coupled with combined hardening, Mater. Sci. Eng. A, vol. 772, pp. 138774, 2020. DOI: 10.1016/j.msea.2019.138774.
  • S. Cai and L. Chen, Parameter identification and blanking simulations of DP1000 and Al6082-T6 using Lemaitre damage model, Adv. Manuf., vol. 9, no. 3, pp. 457–472, 2021. DOI: 10.1007/s40436-021-00350-5.
  • D. Krajcinovic, Damage Mechanics, Amsterdam, North-Holland: Elsevier, 1996.
  • D. Krajcinovic and J. Lemaitre, Continuum Damage Mechanics: theory and Applications, Springer Verlag Wien-New York: Springer, 1987.
  • J. C. Simo and T. J. Hughes, Computational Inelasticity, New York: Springer Science & Business Media, 2006.
  • E. Azinpour, J. Ferreira, M. P. Parente, and J. C. de Sa, A simple and unified implementation of phase field and gradient damage models, Adv. Model. Simul. Eng. Sci., vol. 5, no. 1, pp. 1–24, 2018. DOI: 10.1186/s40323-018-0106-7.
  • D. Peric, D. R. J. Owen, and E. A. de Souza Neto, Computational Methods for Plasticity: theory and Applications, Hoboken, NJ: Wiley, 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.