550
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Mechanical response and auxetic properties of composite double-arrow corrugated sandwich panels with defects

, , , & ORCID Icon
Pages 6517-6529 | Received 05 Jul 2021, Accepted 12 Sep 2021, Published online: 16 Oct 2021

References

  • D. J. Gunton and G. A. Saunders, The Young’s modulus and Poisson’s ratio of arsenic, antimony and bismuth, J. Mater. Sci., vol. 7, no. 9, pp. 1061–1068, 1972. DOI: 10.1007/BF00550070.
  • R. Lakes, Foam structures with a negative Poisson’s ratio, Science, vol. 235, no. 4792, pp. 1038–1040, 1987.
  • Y. Jiang and Y. Li, 3D printed auxetic mechanical metamaterial with chiral cells and re-entrant cores, Sci. Rep., vol. 8, no. 1, pp. 2397, 2018.
  • J. N. Grima, R. Gatt, B. Ellul, et al., Auxetic behaviour in non-crystalline materials having star or triangular shaped perforations, J. Non-Cryst. Solids., vol. 356, no. 37–40, pp. 1980–1987, 2010. DOI: 10.1016/j.jnoncrysol.2010.05.074.
  • M. Shokri Rad, Z. Ahmad, and A. Alias, Computational approach in formulating mechanical characteristics of 3D star honeycomb auxetic structure, Adv. Mater. Sci. Eng., vol. 2015, pp. 1–11, 2015. DOI: 10.1155/2015/650769.
  • Y. L. Chen, X. T. Wang, and L. Ma, Damping mechanisms of CFRP three-dimensional double-arrow-head auxetic metamaterials, Polym. Test., vol. 81, pp. 106189, 2020. DOI: 10.1016/j.polymertesting.2019.106189.
  • A. Spadoni and M. Ruzzene, Elasto-static micropolar behavior of a chiral auxetic lattice, J. Mech. Phys. Solids., vol. 60, no. 1, pp. 156–171, 2012. DOI: 10.1016/j.jmps.2011.09.012.
  • A. Alomarah, D. Ruan, S. Masood, I. Sbarski, and B. Faisal, An investigation of in-plane tensile properties of re-entrant chiral auxetic structure, Int. J. Adv. Manuf. Technol., vol. 96, no. 5–8, pp. 2013–2029, 2018. DOI: 10.1007/s00170-018-1605-x.
  • X. T. Wang, B. Wang, X. W. Li, et al., Mechanical properties of 3D re-entrant auxetic cellular structures, Int. J. Mech. Sci., vol. 131–132, pp. 396–407, 2017. DOI: 10.1016/j.ijmecsci.2017.05.048.
  • A. Alomarah, J. Zhang, D. Ruan, et al., Mechanical properties of the 2D Re-entrant honeycomb made via direct metal printing, IOP Conference Series: Materials Science and Engineering, Vol. 229, pp. 012038, 2017. DOI: 10.1088/1757-899X/229/1/012038.
  • X. K. Lan, Q. Huang, T. Zhou, et al., Optimal design of a novel cylindrical sandwich panel with double arrow auxetic core under air blast loading, Defence Technol., vol. 16, no. 3, pp. 617–626, 2020. DOI: 10.1016/j.dt.2019.09.010.
  • A. A. Pozniak and K. W. Wojciechowski, Poisson’s ratio of rectangular anti-chiral structures with size dispersion of circular nodes, Phys. Status Solidi B., vol. 251, no. 2, pp. 367–374, 2014. DOI: 10.1002/pssb.201384256.
  • A. Arjunan, S. Zahid, A. Baroutaji, and J. Robinson, 3D printed auxetic nasopharyngeal swabs for COVID-19 sample collection, J. Mech. Behav. Biomed. Mater., vol. 114, pp. 104175, 2021. DOI: 10.1016/j.jmbbm.2020.104175.
  • A. Arjunan, M. Singh, A. Baroutaji, et al., Additively manufactured AlSi10Mg inherently stable thin and thick-walled lattice with negative Poisson’s ratio, Compos. Struct., vol. 247, pp. 112469, 2020. DOI: 10.1016/j.compstruct.2020.112469.
  • B. Ahmad, A. Arjunan, J. Robinsion, et al., Metamaterial for crashworthiness applications. Ref. Module Mater. Sci Mater. Eng., 2021. DOI: 10.1016/B978-0-12-815732-9.00092-9.
  • Q. Gao, C. Ge, W. Zhuang, et al., Crashworthiness analysis of double-arrowed auxetic structure under axial impact loading, Mater. Design., vol. 161, pp. 22–34, 2019. DOI: 10.1016/j.matdes.2018.11.013.
  • X. Zhao, Q. Gao, L. Wang, et al., Dynamic crushing of double-arrowed auxetic structure under impact loading, Mater. Design., vol. 160, pp. 527–537, 2018. DOI: 10.1016/j.matdes.2018.09.041.
  • B. Liu, Y. Sun, Y. Sun, et al., Fabrication and compressive behavior of carbon-fiber-reinforced cylindrical foldcore sandwich structure, Compos. A Appl. Sci. Manufact., vol. 118, pp. 9–19, 2019. DOI: 10.1016/j.compositesa.2018.12.011.
  • Y. Du, C. Song, J. Xiong, et al., Fabrication and mechanical behaviors of carbon fiber reinforced composite foldcore based on curved-crease origami, Compos. Sci. Technol., vol. 174, pp. 94–105, 2019. DOI: 10.1016/j.compscitech.2019.02.019.
  • J. S. Yang, L. Ma, R. Schmidt, et al., Hybrid lightweight composite pyramidal truss sandwich panels with high damping and stiffness efficiency, Compos. Struct., vol. 148, pp. 85–96, 2016. DOI: 10.1016/j.compstruct.2016.03.056.
  • S. Li, J. S. Yang, L. Z. Wu, et al., Vibration behavior of metallic sandwich panels with Hourglass truss cores, Mar. Struct., vol. 63, pp. 84–98, 2019. DOI: 10.1016/j.marstruc.2018.09.004.
  • J. S. Yang, Z. D. Liu, R. Schmidt, et al., Vibration-based damage diagnosis of composite sandwich panels with bi-directional corrugated lattice cores, Compos. A Appl. Sci. Manufact., vol. 131, pp. 105781, 2020. DOI: 10.1016/j.compositesa.2020.105781.
  • X. T. Wang, B. Wang, Z. H. Wen, et al., Fabrication and mechanical properties of CFRP composite three-dimensional double-arrow-head auxetic structures, Compos. Sci. Technol., vol. 164, pp. 92–102, 2018. DOI: 10.1016/j.compscitech.2018.05.014.
  • S. Li, J. S. Yang, S. Y. Chen, et al., Modal response and vibration attenuation of carbon fiber composite sandwich cylindrical panels made of bi-directional corrugated strip cores, Mech. Adv. Mater. Struct., pp. 1–15, 2020. DOI: 10.1080/15376494.2020.1758256.
  • Y. Su, X. Wu, and J. Shi, A novel 3D printable multimaterial auxetic metamaterial with reinforced structure: improved stiffness and retained auxetic behavior, Mech. Adv. Mater. Struct., pp. 1–11, 2020. DOI: 10.1080/15376494.2020.1774690.
  • T. C. Lim, Thermal stresses in auxetic plates and shells, Mech. Adv. Mater. Struct., vol. 22, no. 3, pp. 205–212, 2015. DOI: 10.1080/15376494.2012.727203.
  • M. H. Fu, F. Liu, and L. Hu, A novel category of 3D chiral material with negative Poisson’s ratio, Compos. Sci. Technol., vol. 160, pp. 111–118, 2018. DOI: 10.1016/j.compscitech.2018.03.017.
  • M. H. Fu, B. B. Zheng, and W. H. Li, A novel chiral three-dimensional material with negative Poisson’s ratio and the equivalent elastic parameters, Compos. Struct., vol. 176, pp. 442–448, 2017. DOI: 10.1016/j.compstruct.2017.05.027.
  • Z. Zhang, H. Hu, S. Liu, et al., Study of an auxetic structure made of tubes and corrugated sheets, Phys. Status Solidi B., pp. n/a–6, 2013. DOI: 10.1002/pssb.201248349.
  • K. P. Logakannan, V. Ramachandran, J. Rengaswamy, et al., Quasi-static and dynamic compression behaviors of a novel auxetic structure, Compos. Struct., vol. 254, pp. 112853, 2020. DOI: 10.1016/j.compstruct.2020.112853.
  • C. Yang, H. D. Vora, and Y. Chang, Behavior of auxetic structures under compression and impact forces, Smart Mater. Struct., vol. 27, no. 2, pp. 025012, 2018. DOI: 10.1088/1361-665X/aaa3cf.
  • M. Liaqat, H. A. Samad, S. T. A. Hamdani, et al., The development of novel auxetic woven structure for impact applications, J. Textile Inst., pp. 1–7, 2016. DOI: 10.1080/00405000.2016.1239330.
  • J. Xu, S. Huang, and W. Liu, Study on negative poisson ratio and energy absorption characteristics of embedded arrow honeycomb structure, Adv. Sci. Eng., vol. 12, pp. 47–57, 2020.
  • U. Larsen, O. Signund, and S. Bouwsta, Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio, J. Microelectromech. Syst., vol. 6, no. 2, pp. 99–106, 1997. DOI: 10.1109/84.585787.
  • Y. Gao, Q. Wu, X. Wei, et al., Composite tree-like re-entrant structure with high stiffness and controllable elastic anisotropy, Int. J. Solids Struct., vol. 206, pp. 170–182, 2020. DOI: 10.1016/j.ijsolstr.2020.09.003.
  • L. Ma, Y. L. Chen, J. S. Yang, et al., Modal characteristics and damping enhancement of carbon fiber composite auxetic double-arrow corrugated sandwich panels, Compos. Struct., vol. 203, pp. 539–550, 2018. DOI: 10.1016/j.compstruct.2018.07.006.
  • W. Zhang, W. B. Hou, and P. Hu, Mechanical properties of new negative Poisson’s ratio crush box with cellular structure in plateau stage, Acta Mater. Compos. Sin., vol. 32, no. 2, pp. 534–541, 2015.
  • H. Liu, H. Zhang, and R. Ma, Nondestructive testing techniques for composite materials, Nondestruct. Test., vol. 25, no. 12, pp. 631–656, 2003.
  • B. Q. Ma and Z. G. Zhou, Progress and Development Trends of Composite Structure Evaluation Using Noncontact NondestructiveTesting Techniques in Aviation and Aerospace Industries, Acta Aeronaut. Astronaut. Sin., vol. 35, no. 7, pp. 1787–1803, 2014.
  • H. J. Zhang, W. Y. Chen, and D. C. Chen, Study on defect of elliptic del-amination of hole exit zone in driling carbon fiber-reinforced plastic, Chin. Med. J., vol. 40, no. 12, pp. 145–149, 2004. DOI: 10.3901/JME.2004.12.145.
  • J. Lou, L. Wu, L. Ma, et al., Effects of local damage on vibration characteristics of composite pyramidal truss core sandwich structure, Compos. B Eng., vol. 62, pp. 73–87, 2014. DOI: 10.1016/j.compositesb.2014.02.012.
  • J. S. Yang, L. Ma, V. M. Chaves, et al., Influence of manufacturing defects on modal properties of composite pyramidal truss-like core sandwich cylindrical panels, Compos. Sci. Technol., vol. 147, pp. 89–99, 2017. DOI: 10.1016/j.compscitech.2017.05.007.
  • B. Li, Z. Li, J. Zhou, et al., Damage localization in composite lattice truss core sandwich structures based on vibration characteristics, Compos. Struct., vol. 126, pp. 34–51, 2015. DOI: 10.1016/j.compstruct.2015.02.046.
  • S. Li, J. S. Yang, R. Schmidt, et al., Compression and hysteresis responses of multilayer gradient composite lattice sandwich panels, Mar. Struct., vol. 75, pp. 102845, 2021. DOI: 10.1016/j.marstruc.2020.102845.
  • G. Zhang, B. Wang, L. Ma, et al., Response of sandwich structures with pyramidal truss cores under the compression and impact loading, Compos. Struct., vol. 100, pp. 451–463, 2013. DOI: 10.1016/j.compstruct.2013.01.012.
  • X. T. Wang, X. W. Li, and L. Ma, Interlocking assembled 3D auxetic cellular structures, Mater. Design., vol. 99, pp. 467–476, 2016. DOI: 10.1016/j.matdes.2016.03.088.
  • F. Warmuth, F. Osmanlic, L. Adler, et al., Fabrication and characterisation of a fully auxetic 3D lattice structure via selective electron beam melting, Smart Mater. Struct., vol. 26, no. 2, pp. 025013, 2017. DOI: 10.1088/1361-665X/26/2/025013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.