264
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Snap behaviors of bistable unsymmetric cross-ply composite cylindrical shells with different thicknesses

, , , , &
Pages 6557-6566 | Received 08 May 2021, Accepted 12 Sep 2021, Published online: 05 Oct 2021

References

  • V. S. C. Chillara and M. J. Dapino, Review of morphing laminated composites, Appl. Mech. Rev., vol. 72, no. 1, 2020. DOI: 10.1115/1.4044269.
  • G. G. Lozano, A. Tiwari, C. Turner, and S. Astwood, A review on design for manufacture of variable stiffness composite laminates, Proc. Institut. Mech. Engin. Part B: J. Engin. Manufact., vol. 230, no. 6, pp. 981–992, 2016. DOI: 10.1177/0954405415600012.
  • S. Daynes, P. M. Weaver, and K. D. Potter, Aeroelastic study of bistable composite airfoils, J. Aircraft., vol. 46, no. 6, pp. 2169–2174, 2009. DOI: 10.2514/1.44287.
  • S. A. Emam, and D. J. Inman, A review on bistable composite laminates for morphing and energy harvesting, Appl. Mech. Rev., vol. 67, no. 6, pp. 060803, 2015. DOI: 10.1115/1.4032037.
  • J. Z. Wang, A. N. Martinson, L. Yang, W. Huan, S. Fabrizio, and H. X. Peng, Designing multi-stable structures with enhanced designability and deformability by introducing transition elements, Compos. Struct., vol. 233, pp. 111580, 2020. DOI: 10.1016/j.compstruct.2019.111580.
  • A. Algmuni, F. Xi, and H. Alighanbari, Design and analysis of a grid patch multi-stable composite, Compos. Struct., vol. 246, pp. 112378, 2020. DOI: 10.1016/j.compstruct.2020.112378.
  • F. H. Dai, H. Li, and S. Y. Du, A multi-stable wavy skin based on bi-stable laminates, Compos. Part A: Appl. Sci. Manufact., vol. 45, pp. 102–108, 2013. DOI: 10.1016/j.compositesa.2012.09.015.
  • K. D. Potter, and P. M. Weaver, A concept for the generation of out-of-plane distortion from tailored FRP laminates, Compos. Part A., vol. 12, no. 35, pp. 1353–1361, 2004.
  • F. Nicassio, G. Scarselli, F. Pinto, F. Ciampa, O. Iervolino, and M. Meo, Low energy actuation technique of bistable composites for aircraft morphing, Aerosp. Sci. Technol., vol. 75, pp. 35–46, 2018. DOI: 10.1016/j.ast.2017.12.040.
  • S. Daynes, S. J. Nall, P. M. Weaver, K. D. Potter, P. Margaris, and P. H. Mellor, Bistable composite flap for an airfoil, J. Aircraft., vol. 47, no. 1, pp. 334–338, 2010. DOI: 10.2514/1.45389.
  • S. Barbarino, O. Bilgen, R. M. Ajaj, M. I. Friswell, and D. J. Inman, A review of morphing aircraft, J. Intell. Mater. Syst. Struct., vol. 22, no. 9, pp. 823–877, 2011. DOI: 10.1177/1045389X11414084.
  • G. Scarselli, F. Nicassio, F. Pinto, F. Ciampa, O. Iervolino, and M. Meo, A novel bistable energy harvesting concept, Smart Mater. Struct., vol. 25, no. 5, pp. 055001, 2016. DOI: 10.1088/0964-1726/25/5/055001.
  • P. Mallol, H. Mao, and G. Tibert, Experiments and simulations of the deployment of a bistable composite boom, J. Spacecraft Rockets., vol. 55, no. 2, pp. 292–302, 2018. DOI: 10.2514/1.A33906.
  • W. HM, Some observations on the cured shape of thin unsymmetric laminates, J. Compos. Mater., vol. 15, no. 2, pp. 175–194, 1981.
  • W. HM, The room-temperature shapes of four-layer unsymmetric cross-ply laminates, J. Compos. Mater., vol. 16, no. 4, pp. 318–340, 1982.
  • W. HM, Calculations of the room-temperature shapes of unsymmetric laminates, J. Compos. Mater., vol. 15, no. 4, pp. 296–310, 1981.
  • A. Pirrera, D. Avitabile, and P. M. Weaver, On the thermally induced bistability of composite cylindrical shells for morphing structures, Int. J. Solids Struct., vol. 49, no. 5, pp. 685–700, 2012. DOI: 10.1016/j.ijsolstr.2011.11.011.
  • A. Pirrera, D. Avitabile, and P. M. Weaver, Bistable plates for morphing structures: A refined analytical approach with high-order polynomials, Int. J. Solids Struct., vol. 47, no. 25–26, pp. 3412–3425, 2010. DOI: 10.1016/j.ijsolstr.2010.08.019.
  • K. S. Fancey, Viscoelastically prestressed polymeric matrix composites: An overview, J. Reinf. Plast. Compos., vol. 35, no. 17, pp. 1290–1301, 2016. DOI: 10.1177/0731684416649036.
  • B. Wang, and K. S. Fancey, A bistable morphing composite using viscoelastically generated prestress, Mater. Lett., vol. 158, pp. 108–110, 2015. DOI: 10.1016/j.matlet.2015.05.129.
  • J. Figueroa and O. Myers, Fabrication of non-traditional shapes from carbon fiber reinforced polymer laminates. In: Naguib HE, editor. Behaviour and Mechanics of Multifunctional Materials XIII, Denver, Colorado, United States, pp. 10968, 2019. DOI: 10.1117/12.2514322.
  • A. Firouzian-Nejad, C. Bowen, S. Mustapha, M. Ghayour, and S. Ziaei-Rad, Bi-stable hybrid composite laminates containing metallic strips: an experimental and numerical investigation, Smart Mater. Struct., vol. 28, no. 5, pp. 055030, 2019. DOI: 10.1088/1361-665X/ab1183.
  • A. Mukherjee, S. F. Ali, and A. Arockiarajan, Hybrid bistable composite laminates for structural assemblies: A numerical and experimental study, Compos. Struct., vol. 260, pp. 113467, 2021. DOI: 10.1016/j.compstruct.2020.113467.
  • J. G. Lee, J. Ryu, H. Lee, and M. Cho, Saddle-shaped, bistable morphing panel with shape memory alloy spring actuator, Smart Mater. Struct., vol. 23, no. 7, pp. 074013, 2014. DOI: 10.1088/0964-1726/23/7/074013.
  • H. A. Kim, D. N. Betts, A. I. T. Salo, and C. R. Bowen, Shape memory alloy-piezoelectric active structures for reversible actuation of bistable composites, AIAA J., vol. 48, no. 6, pp. 1265–1268, 2010. DOI: 10.2514/1.J050100.
  • P. F. Giddings, H. A. Kim, A. I. T. Salo, and C. R. Bowen, Modelling of piezoelectrically actuated bistable composites, Mater. Lett., vol. 65, no. 9, pp. 1261–1263, 2011. DOI: 10.1016/j.matlet.2011.01.015.
  • A. J. Lee, A. Moosavian, and D. J. Inman, Control and characterization of a bistable laminate generated with piezoelectricity, Smart Mater. Struct., vol. 26, no. 8, pp. 085007, 2017. DOI: 10.1088/1361-665X/aa7165.
  • Post-buckling analysis of laminated composite doubly curved panel embedded with SMA fibers subjected to thermal environment, Mech. Adv. Mater. Struct., vol. 20, no. 10, pp. 842–853, 2013.
  • Thermal buckling strength of smart nanotube-reinforced doubly curved hybrid composite panels, Comput. Math. Appl., 90, 13–24., 2021.
  • Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre, Smart Struct. Syst., vol. 20, no. 5, 595–605, 2017.
  • Thermal post-buckling analysis of a laminated composite spherical shell panel embedded with shape memory alloy fibres using non-linear finite element method, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010.
  • S. Tawfik, X. Tan, S. Ozbay, and E. Armanios, Anticlastic stability modeling for cross-ply composites, J. Compos. Mater., vol. 41, no. 11, pp. 1325–1338, 2007. DOI: 10.1177/0021998306068073.
  • Z. Zhang, H. Wu, X. He, H. Wu, Y. Bao, and G. Chai, The bistable behaviours of carbon-fiber/epoxy anti-symmetric composite shells, Compos. Part B: Engin., vol. 47, pp. 190–199, 2013. DOI: 10.1016/j.compositesb.2012.10.040.
  • Z. Zhang, H. Wu, G. Ye, H. Wu, X. He, and G. Chai, Systematic experimental and numerical study of bistable snap processes for anti-symmetric cylindrical shells, Compos. Struct., vol. 112, pp. 368–377, 2014. DOI: 10.1016/j.compstruct.2014.02.030.
  • T. Ahmed, Y. Ea, and N. Sam, Buckling and Post Buckling Behaviour for Unsymmetrical Laminates Part II Stability Characteristics, CSME International Congress, Toronto, Canada, 2018.
  • B. Wang, C. Ge, and K. S. Fancey, Snap-through behaviour of a bistable structure based on viscoelastically generated prestress, Compos. Part B: Engin., vol. 114, pp. 23–33, 2017. DOI: 10.1016/j.compositesb.2017.01.069.
  • K. Potter, P. Weaver, A. A. Seman, and S. Shah, Phenomena in the bifurcation of unsymmetric composite plates, Compos. Part A: Appl. Sci. Manufact., vol. 38, no. 1, pp. 100–106, 2007. DOI: 10.1016/j.compositesa.2006.01.017.
  • J. G. Lee, J. Ryu, S.-W. Kim, J.-S. Koh, K.-J. Cho, and M. Cho, Effect of initial tool-plate curvature on snap-through load of unsymmetric laminated cross-ply bistable composites, Compos. Struct., vol. 122, pp. 82–91, 2015. DOI: 10.1016/j.compstruct.2014.11.037.
  • C. J. Brampton, D. N. Betts, C. R. Bowen, and H. A. Kim, Sensitivity of bistable laminates to uncertainties in material properties, geometry and environmental conditions, Compos. Struct., vol. 102, pp. 276–286, 2013. DOI: 10.1016/j.compstruct.2013.03.005.
  • M. Moore, S. Ziaei-Rad, and A. Firouzian-Nejad, Temperature-curvature relationships in asymmetric angle ply laminates by considering the effects of resin layers and temperature dependency of material properties, J. Compos. Mater., vol. 48, no. 9, pp. 1071–1089, 2014. DOI: 10.1177/0021998313482155.
  • M. Moore, S. Ziaei-Rad, and H. Salehi, Thermal response and stability characteristics of bistable composite laminates by considering temperature dependent material properties and resin layers, Appl. Compos. Mater., vol. 20, no. 1, pp. 87–106, 2013. DOI: 10.1007/s10443-012-9255-x.
  • E. Eckstein, A. Pirrera, and P. M. Weaver, Morphing high-temperature composite plates utilizing thermal gradients, Compos. Struct., vol. 100, pp. 363–372, 2013. DOI: 10.1016/j.compstruct.2012.12.049.
  • J. P. Stacey, M. P. ODonnell, and M. Schenk, Thermal prestress in composite compliant shell mechanisms, J. Mech. Robotics-Transact. ASME., vol. 11, no. 2, 2019. DOI: 10.1115/1.4042476.
  • P. F. Giddings, C. R. Bowen, A. I. T. Salo, et al., Bistable composite laminates: Effects of laminate composition on cured shape and response to thermal load, Compos. Struct., vol. 92, no. 9, pp. 2220–2225, 2010. DOI: 10.1016/j.compstruct.2009.08.043.
  • W. J. Jun, and C. S. Hong, Cured shape of unsymmetric laminates with arbitrary lay-up angles, J. Reinforced Plast. Compos., vol. 11, no. 12, pp. 1352–1366, 1992. DOI: 10.1177/073168449201101202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.