773
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Inverse characterization of composites using guided waves and convolutional neural networks with dual-branch feature fusion

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 6595-6611 | Received 26 Jul 2021, Accepted 14 Sep 2021, Published online: 07 Oct 2021

References

  • R. Kline, Nondestructive Characterization of Composite Media, Routledge, 2017. DOI: 10.1201/9780203745663.
  • D. A. Paterson, W. Ijomah, and J. F. Windmill, Elastic constant determination of unidirectional composite via ultrasonic bulk wave through transmission measurements: a review, Prog. Mater. Sci., vol. 97, pp. 1–37, 2018. DOI: 10.1016/j.pmatsci.2018.04.001.
  • R. Sevenois, et al., Multiscale approach for identification of transverse isotropic carbon fibre properties and prediction of woven elastic properties using ultrasonic identification, Compos. Sci. Technol., vol. 168, pp. 160–169, 2018. DOI: 10.1016/j.compscitech.2018.09.016.
  • L. Nelson, R. Smith, and M. Mienczakowski, Ply-orientation measurements in composites using structure-tensor analysis of volumetric ultrasonic data, Compo A Appl. Sci. Manuf., vol. 104, pp. 108–119, 2018. DOI: 10.1016/j.compositesa.2017.10.027.
  • A. Martens, et al., Characterization of the orthotropic viscoelastic tensor of composites using the ultrasonic polar scan, Compos. Struct., vol. 230, pp. 111499, 2019. DOI: 10.1016/j.compstruct.2019.111499.
  • L. Nelson, and R. Smith, Fibre direction and stacking sequence measurement in carbon fibre composites using radon transforms of ultrasonic data, Compos. A Appl. Sci. Manuf., vol. 118, pp. 1–8, 2019. DOI: 10.1016/j.compositesa.2018.12.009.
  • J. H. Tam, Z. C. Ong, Z. Ismail, B. C. Ang, and S. Y. Khoo, Identification of material properties of composite materials using nondestructive vibrational evaluation approaches: A review, Mech. Adv. Mater. Struct., vol. 24, no. 12, pp. 971–986, 2017. DOI: 10.1080/15376494.2016.1196798.
  • J. H. Tam, Z. C. Ong, Z. Ismail, B. C. Ang, S. Y. Khoo, and W. L. Li, Inverse identification of elastic properties of composite materials using hybrid Ga-Aco-Pso algorithm, Inverse Prob. Sci. Eng., vol. 26, no. 10, pp. 1432–1463, 2018. DOI: 10.1080/17415977.2017.1411911.
  • K. Balasubramaniam, Inversion of the ply lay-up sequence for multi-layered fiber reinforced composite plates using genetic algorithm, Nondestruct. Test. Eval., vol. 15, no. 5, pp. 311–331, 1998. DOI: 10.1080/10589759908952877.
  • B. Hosten, M. Castaings, H. Tretout, and H. Voillaume, Identification of composite materials elastic moduli from lamb wave velocities measured with single sided, contactless ultrasonic method, in: AIP Conference Proceedings, Vol. 557-1, American Institute of Physics, 2001. pp. 1023–1030. DOI: 10.1063/1.1373867.
  • J. Vishnuvardhan, C. Krishnamurthy, and K. Balasubramaniam, Genetic algorithm based reconstruction of the elastic moduli of orthotropic plates using an ultrasonic guided wave single-transmitter-multiple-receiver SHM array, Smart Mater. Struct., vol. 16, no. 5, pp. 1639–1650, 2007. DOI: 10.1088/0964-1726/16/5/017.
  • R. Cui, and F. L. di Scalea, On the identification of the elastic properties of composites by ultrasonic guided waves and optimization algorithm, Compos. Struct., vol. 223, pp. 110969, 2019. DOI: 10.1016/j.compstruct.2019.110969.
  • P. Kudela, M. Radzienski, P. Fiborek, and T. Wandowski, Elastic constants identification of woven fabric reinforced composites by using guided wave dispersion curves and genetic algorithm, Compos. Struct., vol. 249, pp. 112569, 2020. DOI: 10.1016/j.compstruct.2020.112569.
  • T. Kundu, Ultrasonic Nondestructive Evaluation: engineering and Biological Material Characterization, CRC Press, 2003. DOI: 10.1201/9780203501962.
  • V. Giurgiutiu, Structural Health Monitoring: With Piezoelectric Wafer Active Sensors, Elsevier, 2007. DOI: 10.1016/C2013-0-00155-7.
  • C. Boller, F.-K. Chang, and Y. Fujino, Encyclopedia of Structural Health Monitoring, Wiley, 2009. DOI: 10.1002/9780470061626.
  • S. Gopalakrishnan, M. Ruzzene, and S. Hanagud, Computational Techniques for Structural Health Monitoring, Springer Science & Business Media, 2011. DOI: 10.1007/978-0-85729-284-1.
  • M. Mitra, and S. Gopalakrishnan, Guided wave based structural health monitoring: A review, Smart Mater. Struct., vol. 25, no. 5, pp. 053001, 2016. DOI: 10.1088/0964-1726/25/5/053001.
  • Q. Chen, K. Xu, and D. Ta, High-resolution lamb waves dispersion curves estimation and elastic property inversion, Ultrasonics., vol. 115, pp. 106427, 2021. DOI: 10.1016/j.ultras.2021.106427.
  • N. Bochud, Q. Vallet, Y. Bala, H. Follet, J. Minonzio, and P. Laugier, Genetic algorithms-based inversion of multimode guided waves for cortical bone characterization, Phys. Med. Biol., vol. 61, no. 19, pp. 6953–6974, 2016. DOI: 10.1088/0031-9155/61/19/6953.
  • J.-G. Minonzio, et al., Automatic classifying of patients with non-traumatic fractures based on ultrasonic guided wave spectrum image using a dynamic support vector machine, IEEE Access., vol. 8, pp. 194752–194764, 2020. DOI: 10.1109/ACCESS.2020.3033480.
  • Y. Li, K. Xu, Y. Li, F. Xu, D. Ta, and W. Wang, Deep learning analysis of ultrasonic guided waves for cortical bone characterization, IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 68, no. 4, pp. 935–951, 2021. DOI: 10.1109/TUFFC.2020.3025546.
  • M. Rautela, S. Gopalakrishnan, K. Gopalakrishnan, and Y. Deng, Ultrasonic guided waves based identification of elastic properties using 1d-convolutional neural networks, in: 2020 IEEE International Conference on Prognostics and Health Management (ICPHM), IEEE, 2020. pp. 1–7. DOI: 10.1109/ICPHM49022.2020.9187057.
  • K. Gopalakrishnan, M. Rautela, and Y. Deng, Deep learning based identification of elastic properties using ultrasonic guided waves. in: European Workshop on Structural Health Monitoring, Springer, 2020. pp. 77–90. DOI: 10.1007/978-3-030-64908-1_8.
  • S. I. Rokhlin, and L. Wang, Stable recursive algorithm for elastic wave propagation in layered anisotropic media: Stiffness matrix method, J. Acoust. Soc. Am., vol. 112, no. 3 Pt 1, pp. 822–834, 2002. DOI: 10.1121/1.1497365.
  • L. Wang, and S. I. Rokhlin, Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media, Ultrasonics., vol. 39, no. 6, pp. 413–424, 2001. DOI: 10.1016/S0041-624X(01)00082-8.
  • V. Giurgiutiu, Stress, Vibration, and Wave Analysis in Aerospace Composites: SHM and NDE Applications, Elsevier Science, 2021. https://www.elsevier.com/books/stress-vibration-and-wave-analysis-in-aerospace-composites/giurgiutiu/978-0-12-813308-8
  • N. Rauter, B. Hennings, M. Neumann, A. Asmus, and R. Lammering, Wave propagation in elastic solids: An analytical approach. in: Lamb-Wave Based Structural Health Monitoring in Polymer Composites, Springer, 2018. pp. 17–62. DOI: 10.1007/978-3-319-49715-0_3.
  • A. Huber, Numerical modeling of guided waves in anisotropic composites with application to air-coupled ultrasonic inspection, Technical report, Universität Augsburg. December, 2020. https://elib.dlr.de/139819/.
  • A. M. Huber, and M. G. Sause, Classification of solutions for guided waves in anisotropic composites with large numbers of layers, J. Acoust. Soc. Am., vol. 144, no. 6, pp. 3236–3251, 2018. DOI: 10.1121/1.5082299.
  • M. Sause, and M. Hamstad, 7.14 acoustic emission analysis. In: P. W. Beaumont, C. H. Zweben (eds.), Comprehensive Composite Materials II, Elsevier, Oxford, 2018, pp. 291–326. DOI: 10.1016/B978-0-12-803581-8.10036-0.
  • S. Rokhlin, D. Chimenti, and P. Nagy, Physical Ultrasonics of Composites, Oxford University Press, 2011. DOI: 10.1121/1.3655882.
  • A. Huber, Dispersion Calculator (DC), available at, https://www.dlr.de/zlp/en/desktopdefault.aspx/tabid-14332/24874_read-61142/#/gallery/33485, 2018.
  • J. Moll, et al., Open guided waves: online platform for ultrasonic guided wave measurements, Struct. Health Monit., vol. 18, no. 5–6, pp. 1903–1914, 2019. DOI: 10.1177/1475921718817169.
  • C. Simon, H. Kaczmarek, and D. Royer, Elastic wave propagation along arbitrary direction in free orthotropic plates. application of composite materials, in: Proceedings of the 4th Congress on Acoustics, Vol. 1, 1997.
  • W. Percival, and E. Birt, A study of lamb wave propagation in carbon-fibre composites, Insight., vol. 39, no. 10, pp. 728–735, 1997.
  • X. Yu, Z. Fan, M. Castaings, and C. Biateau, Feature guided wave inspection of bond line defects between a stiffener and a composite plate, NDT & E Int., vol. 89, pp. 44–55, 2017. DOI: 10.1016/j.ndteint.2017.03.008.
  • K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators, Neural Netw., vol. 2, no. 5, pp. 359–366, 1989. DOI: 10.1016/0893-6080(89)90020-8.
  • A. R. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans. Inform. Theor., vol. 39, no. 3, pp. 930–945, 1993. DOI: 10.1109/18.256500.
  • M. Rautela, and C. Bijudas, Electromechanical admittance based integrated health monitoring of adhesive bonded beams using surface bonded piezoelectric transducers, Int. J. Adhes. Adhes., vol. 94, pp. 84–98, 2019. DOI: 10.1016/j.ijadhadh.2019.05.002.
  • M. Telgarsky, Benefits of depth in neural networks. arXiv preprint , 2016.
  • M. Rautela, and S. Gopalakrishnan, Ultrasonic guided wave based structural damage detection and localization using model assisted convolutional and recurrent neural networks, Expert Syst. Appl., vol. 167, pp. 114189, 2021. DOI: 10.1016/j.eswa.2020.114189.
  • M. Rautela, J. Senthilnath, J. Moll, and S. Gopalakrishnan, Combined two-level damage identification strategy using ultrasonic guided waves and physical knowledge assisted machine learning, Ultrasonics., vol. 115, pp. 106451, 2021. DOI: 10.1016/j.ultras.2021.106451.
  • X. Zhao, H. Zhang, G. Zhu, F. You, S. Kuang, and L. Sun, A multi-branch 3d convolutional neural network for EEG-based motor imagery classification, IEEE Trans Neural Syst Rehabil Eng., vol. 27, no. 10, pp. 2164–2177, 2019. DOI: 10.1109/TNSRE.2019.2938295.
  • J. B. Hampshire, and A. H. Waibel, A novel objective function for improved phoneme recognition using time-delay neural networks, IEEE Trans Neural Netw., vol. 1, no. 2, pp. 216–228, 1990. DOI: 10.1109/72.80233.
  • I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016. http://www.deeplearningbook.org
  • D. P. Kingma, and J. Ba, Adam: A method for stochastic optimization. arXiv preprint , 2014.
  • H. Pan, M. Azimi, F. Yan, and Z. Lin, Time-frequency-based data-driven structural diagnosis and damage detection for cable-stayed bridges, J. Bridge Eng., vol. 23, no. 6, pp. 04018033, 2018. DOI: 10.1061/(ASCE)BE.1943-5592.0001199.
  • S. G. Shahidi, M. B. Nigro, S. N. Pakzad, and Y. Pan, Structural damage detection and localisation using multivariate regression models and two-sample control statistics, Struct. Infrastruct. Eng., vol. 11, no. 10, pp. 1277–1293, 2015. DOI: 10.1080/15732479.2014.949277.
  • Q. Zhou, H. Zhou, Q. Zhou, F. Yang, and L. Luo, Structure damage detection based on random forest recursive feature elimination, Mech. Syst. Sig. Process., vol. 46, no. 1, pp. 82–90, 2014. DOI: 10.1016/j.ymssp.2013.12.013.
  • J. Zhao, J. N. Ivan, and J. T. DeWolf, Structural damage detection using artificial neural networks, J. Infrastruct. Syst., vol. 4, no. 3, pp. 93–101, 1998. DOI: 10.1061/(ASCE)1076-0342(1998)4:3(93).
  • F. Pedregosa, et al., Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011.
  • L. Wang, and F. Yuan, Group velocity and characteristic wave curves of lamb waves in composites: Modeling and experiments, Compos. Sci. Technol., vol. 67, no. 7-8, pp. 1370–1384, 2007. DOI: 10.1016/j.compscitech.2006.09.023.
  • Z. Su, and L. Ye, Identification of Damage Using Lamb Waves: From Fundamentals to Applications, Vol. 48, Springer Science & Business Media, 2009. DOI: 10.1007/978-1-84882-784-4.
  • M. K. Malik, D. Chronopoulos, and F. Ciampa, Direct calculation of the group velocity for two-dimensional complex, composite and periodic structures using a wave and finite element scheme, Appl. Sci., vol. 11, no. 10, pp. 4319, 2021. DOI: 10.3390/app11104319.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.