115
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A novel assumed-strain finite element for detecting the elastic behavior of wall-like structures

ORCID Icon, ORCID Icon & ORCID Icon
Pages 6664-6684 | Received 27 Mar 2021, Accepted 19 Sep 2021, Published online: 12 Oct 2021

References

  • B. Wu, A. Pagani, W.Q. Chen and E. Carrera, Geometrically nonlinear refined shell theories by Carrera Unified Formulation, Mech. Adv. Mater. Struct., vol. 28, no. 16, pp. 1721–1741, 2021. DOI: 10.1080/15376494.2019.1702237.
  • Y. Urthaler and J. Reddy, A mixed finite element for the nonlinear bending analysis of laminated composite plates based on FSDT, Mech. Adv. Mater. Struct., vol. 15, no. 5, pp. 335–354, 2008. DOI: 10.1080/15376490802045671.
  • M. Rezaiee-Pajand and N. Gharaei-Moghaddam, Frame nonlinear analysis by force method, Int. J. Steel Struct., vol. 17, no. 2, pp. 609–629, 2017. DOI: 10.1007/s13296-017-6019-3.
  • G. De Pietro, A.G. de Miguel, E. Carrera, G. Giunta, S. Belouettar and A. Pagani, Strong and weak form solutions of curved beams via Carrera’s unified formulation, Mech. Adv. Mater. Struct., vol. 27, no. 15, pp. 1342–1353, 2020. DOI: 10.1080/15376494.2018.1510066.
  • P. Mukherjee, D. Punera, and M. Mishra, Coupled flexural torsional analysis and buckling optimization of variable stiffness thin-walled composite beams, Mech. Adv. Mater. Struct., pp. 1–21, 2021. DOI: 10.1080/15376494.2021.1878565.
  • M. Cinefra, Formulation of 3D finite elements using curvilinear coordinates, Mech. Adv. Mater. Struct., pp. 1–10, 2020. DOI: 10.1080/15376494.2020.1799122.
  • G.M. Kulikov, S.V. Plotnikova, and E. Carrera, A robust, four-node, quadrilateral element for stress analysis of functionally graded plates through higher-order theories, Mech. Adv. Mater. Struct., vol. 25, no. 15–16, pp. 1383–1402, 2018. DOI: 10.1080/15376494.2017.1288994.
  • M. Cinefra and S. Valvano, A variable kinematic doubly-curved MITC9 shell element for the analysis of laminated composites, Mech. Adv. Mater. Struct., vol. 23, no. 11, pp. 1312–1325, 2016. DOI: 10.1080/15376494.2015.1070304.
  • M. Cinefra, E. Carrera, and S. Valvano, Variable kinematic shell elements for the analysis of electro-mechanical problems, Mech. Adv. Mater. Struct., vol. 22, no. 1–2, pp. 77–106, 2015. DOI: 10.1080/15376494.2014.908042.
  • N.S. Lee and K.J. Bathe, Effects of element distortions on the performance of isoparametric elements, Int. J. Numer. Methods Eng., vol. 36, no. 20, pp. 3553–3576, 1993. DOI: 10.1002/nme.1620362009.
  • M. Rezaiee-Pajand and N. Gharaei-Moghaddam, Analysis of 3D Timoshenko frames having geometrical and material nonlinearities, Int. J. Mech. Sci., vol. 94–95, pp. 140–155, 2015. DOI: 10.1016/j.ijmecsci.2015.02.014.
  • M. Rezaiee-Pajand, N. Gharaei-Moghaddam, and M. Ramezani, Strain-based plane element for fracture mechanics’ problems, Theor. Appl. Fract. Mech., vol. 108, pp. 102569, 2020. DOI: 10.1016/j.tafmec.2020.102569.
  • M. Rezaiee-Pajand and N. Gharaei-Moghaddam, Using co-rotational method for cracked frame analysis, Meccanica, vol. 53, no. 8, pp. 2121–2143, 2018. DOI: 10.1007/s11012-017-0796-9.
  • M. Rezaiee-Pajand and N. Gharaei-Moghaddam, A force-based rectangular cracked element, Int. J. Appl. Mech., vol. 13, no. 04, pp. 2150047, 2021. DOI: 10.1142/S1758825121500472.
  • M. Rezaiee-Pajand and N. Gharaei-Moghaddam, Force-based curved beam elements with open radial edge cracks, Mech. Adv. Mater. Struct., vol. 27, no. 2, pp. 128–140, 2020. DOI: 10.1080/15376494.2018.1472326.
  • M. Rezaiee-Pajand and N. Gharaei-Moghaddam, Vibration and static analysis of cracked and non-cracked non-prismatic frames by force formulation, Eng. Struct., vol. 185, pp. 106–121, 2019. DOI: 10.1016/j.engstruct.2019.01.117.
  • D. Allman, A compatible triangular element including vertex rotations for plane elasticity analysis, Comput. Struct., vol. 19, no. 1–2, pp. 1–8, 1984. DOI: 10.1016/0045-7949(84)90197-4.
  • P.G. Bergan and C.A. Felippa, A triangular membrane element with rotational degrees of freedom, Comput. Methods Appl. Mech. Eng., vol. 50, no. 1, pp. 25–69, 1985. DOI: 10.1016/0045-7825(85)90113-6.
  • Y. Shang, C.F. Li, and K.Y. Jia, 8‐node hexahedral unsymmetric element with rotation degrees of freedom for modified couple stress elasticity, Int. J. Numer. Methods Eng., vol. 121, no. 12, pp. 2683–2700, 2020. DOI: 10.1002/nme.6325.
  • D. Boutagouga, K. Djeghaba, and D. Owen, Nonlinear dynamic co-rotational formulation for membrane elements with in-plane drilling rotational degree of freedom, Eng. Comput., vol. 33, no. 3, pp. 667–697, 2016. DOI: 10.1108/EC-02-2015-0030.
  • M. Rezaiee-Pajand, M. Ramezani, and N. Gharaei-Moghaddam, Using higher-order strain interpolation function to improve the accuracy of structural responses, Int. J. Appl. Mechanics ., vol. 12, no. 03, pp. 2050026, 2020. DOI: 10.1142/S175882512050026X.
  • M. Rezaiee-Pajand, N. Gharaei-Moghaddam, and M. Ramezani, Higher-order assumed strain plane element immune to mesh distortion, Eng. Comput., vol. 37, no. 9, pp. 2957–2981, 2020. DOI: 10.1108/EC-09-2019-0422.
  • S. Rajendran and K.M. Liew, A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic displacement field, Int. J. Numer. Methods Eng., vol. 58, no. 11, pp. 1713–1748, 2003. DOI: 10.1002/nme.836.
  • D. Boutagouga, A formulation of membrane finite elements with true drilling rotation, Eng. Comput., vol. 37, no. 1, pp. 203–236, 2019. DOI: 10.1108/EC-12-2018-0572.
  • C. Wang, Y. Wang, C. Yang, X. Zhang and P. Hu, 8-node and 12-node plane elements based on assumed stress quasi-conforming method immune to distorted mesh, Eng. Comput., vol. 34, no. 8, pp. 2731–2751, 2017. DOI: 10.1108/EC-11-2016-0404.
  • Y.S. Choo, N. Choi, and B.C. Lee, Quadrilateral and triangular plane elements with rotational degrees of freedom based on the hybrid Trefftz method, Finite Elem. Anal. Des., vol. 42, no. 11, pp. 1002–1008, 2006. DOI: 10.1016/j.finel.2006.03.006.
  • N. Choi, Y.S. Choo, and B.C. Lee, A hybrid Trefftz plane elasticity element with drilling degrees of freedom, Comput. Methods Appl. Mech. Eng., vol. 195, no. 33–36, pp. 4095–4105, 2006. DOI: 10.1016/j.cma.2005.07.016.
  • J. Eom, J. Ko, and B.C. Lee, A macro plane triangle element from the individual element test, Finite Elem. Anal. Des., vol. 45, no. 6–7, pp. 422–430, 2009. DOI: 10.1016/j.finel.2008.12.001.
  • L. Duan and J. Zhao, An extended first-order generalized beam theory for perforated thin-walled members, Thin-Walled Struct., vol. 161, pp. 107492, 2021. DOI: 10.1016/j.tws.2021.107492.
  • K. Liew, S. Rajendran, and J. Wang, A quadratic plane triangular element immune to quadratic mesh distortions under quadratic displacement fields, Comput. Methods Appl. Mech. Eng., vol. 195, no. 9–12, pp. 1207–1223, 2006. DOI: 10.1016/j.cma.2005.04.012.
  • X.M. Chen, S. Cen, X.R. Fu and Y.Q. Long, A new quadrilateral area coordinate method (QACM‐II) for developing quadrilateral finite element models, Int. J. Numer. Methods Eng., vol. 73, no. 13, pp. 1911–1941, 2008. DOI: 10.1002/nme.2159.
  • Y. Long, J. Li, Z. Long and S. Cen, Area co‐ordinates used in quadrilateral elements, Commun. Numer. Methods Eng., vol. 15, no. 8, pp. 533–545, 1999. DOI: 10.1002/(SICI)1099-0887(199908)15:8<533::AID-CNM265>3.0.CO;2-D.
  • Z.F. Long, S. Cen, L. Wang, X.R. Fu and Y.Q. Long, The third form of the quadrilateral area coordinate method (QACM-III): Theory, application, and scheme of composite coordinate interpolation, Finite Elem. Anal. Des., vol. 46, no. 10, pp. 805–818, 2010. DOI: 10.1016/j.finel.2010.04.008.
  • S. Cen, X.-M. Chen, and X.-R. Fu, Quadrilateral membrane element family formulated by the quadrilateral area coordinate method, Comput. Methods Appl. Mech. Eng., vol. 196, no. 4144, pp. 4337–4353, 2007. DOI: 10.1016/j.cma.2007.05.004.
  • X.M. Chen, S. Cen, Y.Q. Long and Z.H. Yao, Membrane elements insensitive to distortion using the quadrilateral area coordinate method, Comput. Struct., vol. 82, no. 1, pp. 35–54, 2004. DOI: 10.1016/j.compstruc.2003.08.004.
  • S. Cen, X.-R. Fu, and M.-J. Zhou, 8-and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes, Comput. Methods Appl. Mech. Eng., vol. 200, no. 2932, pp. 2321–2336, 2011. DOI: 10.1016/j.cma.2011.04.014.
  • Y. Cheung, Y. Zhang, and W. Chen, A refined nonconforming plane quadrilateral element, Comput. Struct., vol. 78, no. 5, pp. 699–709, 2000. DOI: 10.1016/S0045-7949(00)00049-3.
  • C. Wang, X. Zhang, P. Hu and Z. Qi, Linear and geometrically nonlinear analysis with 4-node plane quasi-conforming element with internal parameters, Acta Mech. Solida Sin., vol. 28, no. 6, pp. 668–681, 2015. DOI: 10.1016/S0894-9166(16)30008-8.
  • M. Rezaiee-Pajand and A. Karimipour, Three stress-based triangular elements, Eng. Comput., vol. 36, no. 4, pp. 1325–1345, 2020. DOI: 10.1007/s00366-019-00765-6.
  • E.T. Ooi, S. Rajendran, and J.H. Yeo, Extension of unsymmetric finite elements US‐QUAD8 and US‐HEXA20 for geometric nonlinear analyses, Eng. Comput., vol. 24, no. 4, pp. 407–431, 2007. DOI: 10.1108/02644400710748715.
  • E. Ooi, S. Rajendran, and J. Yeo, Remedies to rotational frame dependence and interpolation failure of US‐QUAD8 element, Commun. Numer. Methods Eng., vol. 24, no. 11, pp. 1203–1217, 2007. DOI: 10.1002/cnm.1026.
  • E.C. Ting, C. Shih, and Y.-K. Wang, Fundamentals of a vector form intrinsic finite element: Part II. Plane solid elements, J. Mech., vol. 20, no. 2, pp. 123–132, 2004. DOI: 10.1017/S1727719100003348.
  • P.-S. Lee, and K.-J. Bathe, Development of MITC isotropic triangular shell finite elements, Comput. Struct., vol. 82, no. 1112, pp. 945–962, 2004. DOI: 10.1016/j.compstruc.2004.02.004.
  • Y. Ko, P.-S. Lee, and K.-J. Bathe, A new 4-node MITC element for analysis of two-dimensional solids and its formulation in a shell element, Comput. Struct., vol. 192, pp. 34–49, 2017. DOI: 10.1016/j.compstruc.2017.07.003.
  • M. Rezaiee-Pajand and M. Ramezani, An evaluation of MITC and ANS elements in the nonlinear analysis of shell structures, Mech. Adv. Mater. Struct., pp. 1–21, 2021. DOI: 10.1080/15376494.2021.1934917.
  • S.H. Hashemi-Karouei, A. Moazemi Goudarzi, F. Morshedsolouk and S.S.M. Ajarostaghi, Analytical and finite element investigations of the cross-arranged trapezoidal-and sinusoidal-corrugated-cores panels, Mech. Adv. Mater. Struct., pp. 1–11, 2020. DOI: 10.1080/15376494.2020.1834652.
  • M. Lezgy-Nazargah, A finite element model for static analysis of curved thin-walled beams based on the concept of equivalent layered composite cross section, Mech. Adv. Mater. Struct., pp. 1–14, 2020. DOI: 10.1080/15376494.2020.1804649.
  • Y.-R. Kwon and B.-C. Lee, Numerical evaluation of beam models based on the modified couple stress theory, Mech. Adv. Mater. Struct., pp. 1–12, 2020. DOI: 10.1080/15376494.2020.1825887.
  • E. Carrera, I. Kaleel, and M. Petrolo, Elastoplastic analysis of compact and thin-walled structures using classical and refined beam finite element models, Mech. Adv. Mater. Struct., vol. 26, no. 3, pp. 274–286, 2019. DOI: 10.1080/15376494.2017.1378780.
  • K. Wisniewski, W. Wagner, E. Turska and F. Gruttmann, Four-node Hu–Washizu elements based on skew coordinates and contravariant assumed strain, Comput. Struct., vol. 88, no. 21–22, pp. 1278–1284, 2010. DOI: 10.1016/j.compstruc.2010.07.008.
  • F. Auricchio, L.B. Da Veiga, C. Lovadina and A. Reali, An analysis of some mixed-enhanced finite element for plane linear elasticity, Comput. Methods Appl. Mech. Eng., vol. 194, no. 27–29, pp. 2947–2968, 2005. DOI: 10.1016/j.cma.2004.07.028.
  • A. Sabir, A rectangular and triangular plane elasticity element with drilling degrees of freedom, Proceeding of the 2nd International Conference on Variational Methods in Engineering, Chapter 9, Southampton, 1985.
  • A. Sabir and A. Sfendji, Triangular and rectangular plane elasticity finite elements, Thin-Walled Struct., vol. 21, no. 3, pp. 225–232, 1995. DOI: 10.1016/0263-8231(94)00002-H.
  • M.T. Belarbi and M. Bourezane, An assumed strain based on triangular element with drilling rotation, Courrier du Savoir scientifique et technique, vol. 6, no. 6, pp. 117–123, 2005.
  • M. Rezaee Pajand, N. Gharaei-Moghaddam, and M. Ramezani, Review of the strain-based formulation for analysis of plane structures Part I: Formulation of basics and the existing elements, Iran. J. Numer. Anal. Optim., vol. 11, no. 2, pp. 437–483, 2021.
  • M. Rezaee Pajand, N. Gharaei-Moghaddam, and M. Ramezani, Review of the strain-based formulation for analysis of plane structures Part II: Evaluation of the numerical performance, Iran. J. Numer. Anal. Optim., vol. 11, no. 2, pp. 485–511, 2021.
  • M. Rezaiee-Pajand and M. Yaghoobi, Formulating an effective generalized four-sided element, Eur. J. Mech. A/Solids, vol. 36, pp. 141–155, 2012. DOI: 10.1016/j.euromechsol.2012.02.012.
  • R. Pfefferkorn, S. Bieber, B. Oesterle, M. Bischoff and P. Betsch, Improving efficiency and robustness of enhanced assumed strain elements for nonlinear problems, Int. J. Numer. Methods Eng., vol. 122, no. 8, pp. 1911–1939, 2021. DOI: 10.1002/nme.6605.
  • M. Rezaiee-Pajand, N. Gharaei-Moghaddam, and M. Ramezani, Two triangular membrane elements based on strain, Int. J. Appl. Mech., vol. 11, no. 01, pp. 1950010, 2019. DOI: 10.1142/S1758825119500108.
  • M. Rezaiee-Pajand, N. Gharaei-Moghaddam, and M.R. Ramezani, A new higher-order strain-based plane element, Sci. Iran. Trans. A, Civil Eng., vol. 26, no. 4, pp. 2258–2275, 2019.
  • L. Belounar and M. Guenfoud, A new rectangular finite element based on the strain approach for plate bending, Thin-Walled Struct., vol. 43, no. 1, pp. 47–63, 2005. DOI: 10.1016/j.tws.2004.08.003.
  • H. Guenfoud, M. Himeur, H. Ziou and M. Guenfoud, The use of the strain approach to develop a new consistent triangular thin flat shell finite element with drilling rotation, Struct. Eng. Mech., vol. 68, no. 4, pp. 385–398, 2018.
  • C. Rebiai, N. Saidani, and E. Bahloul, A new finite element based on the strain approach for linear and dynamic analysis, Res. J. Appl. Sci. Eng. Technol., vol. 11, no. 6, pp. 639–644, 2015. DOI: 10.19026/rjaset.11.2025.
  • J. Ye and X. He, Evaluation of flexural stiffness on mechanical property of dual row retaining pile wall, Mech. Adv. Mater. Struct., pp. 1–12, 2020. DOI: 10.1080/15376494.2020.1800874.
  • J. Ye and X. He, Response of dual-row retaining pile walls under surcharge load, Mech. Adv. Mater. Struct., pp. 1–12, 2020. DOI: 10.1080/15376494.2020.1832286.
  • M. Meghdadaian and M. Ghalehnovi, Improving seismic performance of composite steel plate shear walls containing openings, J. Build. Eng., vol. 21, pp. 336–342, 2019. DOI: 10.1016/j.jobe.2018.11.001.
  • J. Romanoff, A.T. Karttunen, P. Varsta, H. Remes and B. Reinaldo Goncalves, A review on non-classical continuum mechanics with applications in marine engineering, Mech. Adv. Mater. Struct., vol. 27, no. 13, pp. 1065–1075, 2020. DOI: 10.1080/15376494.2020.1717693.
  • M. Meghdadian, N. Gharaei-Moghaddam, A. Arabshahi, N. Mahdavi and M. Ghalehnovi, Proposition of an equivalent reduced thickness for composite steel plate shear walls containing an opening, J. Constr. Steel Res., vol. 168, pp. 105985, 2020.
  • C.A. Felippa, A study of optimal membrane triangles with drilling freedoms, Comput. Methods Appl. Mech. Eng., vol. 192, no. 16–18, pp. 2125–2168, 2003. DOI: 10.1016/S0045-7825(03)00253-6.
  • M. Rezaiee-Pajand and M. Yaghoobi, A robust triangular membrane element, Lat. Am. J. Solids Struct., vol. 11, no. 14, pp. 2648–2671, 2014. DOI: 10.1590/S1679-78252014001400004.
  • M. Rezaiee-Pajand and M. Yaghoobi, An efficient formulation for linear and geometric non-linear membrane elements, Lat. Am. J. Solids Struct., vol. 11, no. 6, pp. 1012–1035, 2014. DOI: 10.1590/S1679-78252014000600007.
  • S.T. Yeo and B.C. Lee, Equivalence between enhanced assumed strain method and assumed stress hybrid method based on the Hellinger–Reissner principle, Int. J. Numer. Meth. Eng., vol. 39, no. 18, pp. 3083–3099, 1996. DOI: 10.1002/(SICI)1097-0207(19960930)39:18<3083::AID-NME996>3.0.CO;2-F.
  • R. Tian and G. Yagawa, Generalized nodes and high‐performance elements, Int. J. Numer. Methods Eng., vol. 64, no. 15, pp. 2039–2071, 2005. DOI: 10.1002/nme.1436.
  • M. Rezaiee-Pajand, N. Rajabzadeh-Safaei, and A.R. Masoodi, Linear and geometrically nonlinear analysis of plane structures by using a new locking free triangular element, Eng. Struct., vol. 196, pp. 109312, 2019.
  • S. Hu, J. Xu, X. Liu and M. Yan, A simple and robust quadrilateral non-conforming element with a special 5-point quadrature, Eur. J. Mecha. A/Solids, vol. 69, pp. 71–77, 2018. DOI: 10.1016/j.euromechsol.2017.11.011.
  • Y. Shang and W. Ouyang, 4‐node unsymmetric quadrilateral membrane element with drilling DOFs insensitive to severe mesh‐distortion, Int. J. Numer. Methods Eng., vol. 113, no. 10, pp. 1589–1606, 2018. DOI: 10.1002/nme.5711.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.