461
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Vibration isolation of a double-layered Stewart platform with local oscillators

, , , , &
Pages 6685-6693 | Received 19 May 2021, Accepted 18 Sep 2021, Published online: 09 Oct 2021

References

  • V. M. Ryaboy, Vibration control systems for sensitive equipment: limiting performance and optimal design, Shock Vib., vol. 12, no. 1, pp. 37–47, 2005. DOI: 10.1155/2005/916438.
  • Z. X. Deng, J. J. Scheidler, V. M. Asnani, et al., Shunted magnetostrictive devices in vibration control, Smart Mater. Struct., vol. 29, no. 10, pp. 105007, 2020. DOI: 10.1088/1361-665X/ab9e07.
  • S. Zuo, Y. Liu, K. Zhang, et al., Wave boundary control method for vibration suppression of large net structures, Acta Mech., vol. 230, no. 10, pp. 3439–3456, 2019. DOI: 10.1007/s00707-019-02464-1.
  • Y. Z. Wang and Y. S. Wang, Active control of elastic wave propagation in nonlinear phononic crystals consisting of diatomic lattice chain, Wave Motion., vol. 78, pp. 1–8, 2018. DOI: 10.1016/j.wavemoti.2017.12.009.
  • V. Jahangiri and C. Sun, Three-dimensional vibration control of offshore floating wind turbines using multiple tuned mass dampers, Ocean Eng., vol. 206, pp. 107196, 2020. DOI: 10.1016/j.oceaneng.2020.107196.
  • A. D. Shaw, S. A. Neild, D. J. Wagg, et al., A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation, J. Sound Vib., vol. 332, no. 24, pp. 6265–6275, 2013. DOI: 10.1016/j.jsv.2013.07.016.
  • A. Carrella, M. J. Brennam, and T. P. Waters, Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic, J. Sound Vib., vol. 301, no. 3–5, pp. 678–689, 2007. DOI: 10.1016/j.jsv.2006.10.011.
  • S. M. Kim, J. R. Hong, and H. H. Yoo, Analysis and design of a torsional vibration isolator for rotating shafts, J. Mech. Sci. Technol., vol. 33, no. 10, pp. 4627–4634, 2019. DOI: 10.1007/s12206-019-0905-x.
  • C. Liu and K. Yu, Superharmonic resonance of the quasi-zero-stiffness vibration isolator and its effect on the isolation performance, Nonlinear Dyn., vol. 100, no. 1, pp. 95–117, 2020. DOI: 10.1007/s11071-020-05509-6.
  • Y. Wang and X. J. Jing, Nonlinear stiffness and dynamical response characteristics of an asymmetric X-shaped structure, Mech. Syst. Sig. Process., vol. 125, pp. 142–169, 2019. DOI: 10.1016/j.ymssp.2018.03.045.
  • J. Q. Li, F. M. Li, and Y. Narita, Active control of thermal buckling and vibration for a sandwich composite laminated plate with piezoelectric fiber-reinforced composite actuator facesheets, J. Sandw. Struct. Mater., vol. 21, no. 7, pp. 2563–2581, 2019. DOI: 10.1177/1099636218783168.
  • Y. Xue, J. Q. Li, F. M. Li, et al., Active control of plates made of functionally graded piezoelectric material subjected to thermo-electro-mechanical loads, Int. J. Struct. Stabil. Dyn., vol. 19, no. 09, pp. 1950107–1950389, 2019. DOI: 10.1142/S0219455419501074.
  • D. S. Yoon, G. W. Kim, and S. B. Choi, Response time of magnetorheological dampers to current inputs in a semi-active suspension system: modeling, control and sensitivity analysis, Mech. Syst. Signal. Process., vol. 146, pp. 106999, 2021. DOI: 10.1016/j.ymssp.2020.106999.
  • K. Wang, J. Zhou, H. Ouyang, et al., A semi-active metamaterial beam with electromagnetic quasi-zero-stiffness resonators for ultralow-frequency band gap tuning, Int. J. Mech. Sci., vol. 176, pp. 105548, 2020. DOI: 10.1016/j.ijmecsci.2020.105548.
  • F. C. Gao, Z. J. Wu, F. M. Li, et al., Numerical and experimental analysis of the vibration and band-gap properties of elastic beams with periodically variable cross sections, Waves Random Complex Medium., vol. 29, no. 2, pp. 299–316, 2019. DOI: 10.1080/17455030.2018.1430918.
  • Q. Y. Wu, H. Feng, S. Y. Xiao, et al., Passive control analysis and design of twin-tower structure with chassis, Int. J. Struct. Stabil. Dyn., vol. 20, no. 06, pp. 2040010, 2020. DOI: 10.1142/S0219455420400106.
  • M. Furqan, M. Suhaib, and N. Ahmad, Studies on Stewart platform manipulator: a review, J. Mech. Sci. Technol., vol. 31, no. 9, pp. 4459–4470, 2017. DOI: 10.1007/s12206-017-0846-1.
  • B. Dasgupta, and T. S. Mruthyunjaya, The Stewart platform manipulator: a review, Mech. Mach. Theory, vol. 35, no. 1, pp. 15–40, 2000. DOI: 10.1016/S0094-114X(99)00006-3.
  • V. E. Gough, Contribution to discussion of papers on research in automobile stability, control and tyre performance, Proc. Inst. Mech. Eng., vol. 223, pp. 392–394, 1957.
  • D. Stewart, A platform with six degrees of freedom, Proc. Inst. Mech. Eng., vol. 180, no. 1, pp. 371–386, 1965. DOI: 10.1243/PIME_PROC_1965_180_029_02.
  • B. Dasgupta and T. S. Mruthyunjaya, A Newton–Euler formulation for the inverse dynamics of the Stewart platform manipulator, Mech. Mach. Theory, vol. 33, no. 8, pp. 1135–1152, 1998. DOI: 10.1016/S0094-114X(97)00118-3.
  • Y. Ting, C. C. Li, and T. VanNguyen, Composite controller design for a 6 DOF Stewart nanoscale platform, Precis. Eng., vol. 37, no. 3, pp. 671–683, 2013. DOI: 10.1016/j.precisioneng.2013.01.012.
  • R. G. Cobb, J. M. Sullivan, L. P. Davis, et al., Vibration isolation and suppression system for precision payloads in space, Smart Mater. Struct., vol. 8, no. 6, pp. 798–812, 1999. DOI: 10.1088/0964-1726/8/6/309.
  • A. Preumont, M. Horodinca, I. Romanescu, et al., A six-axis single-stage active vibration isolator based on Stewart platform, J. Sound Vib., vol. 300, no. 3–5, pp. 644–661, 2007. DOI: 10.1016/j.jsv.2006.07.050.
  • B. N. Agrawal and H. Chen, Algorithms for active vibration isolation on spacecraft using a Stewart platform, Smart Mater. Struct., vol. 13, no. 4, pp. 873–880, 2004. DOI: 10.1088/0964-1726/13/4/025.
  • Y. Li, X. L. Yang, H. T. Wu, et al., Optimal design of a six-axis vibration isolator via Stewart platform by using homogeneous Jacobian matrix formulation based on dual quaternions, J. Mech. Sci. Technol., vol. 32, no. 1, pp. 11–19, 2018. DOI: 10.1007/s12206-017-1202-1.
  • M. E. Hoque, T. Mizuno, Y. Ishino, et al., A six axis hybrid vibration isolation system using active zeropower control supported by passive weight support mechanism, J. Sound Vib., vol. 329, no. 17, pp. 3417–3430, 2010. DOI: 10.1016/j.jsv.2010.03.003.
  • X. L. Yang, H. T. Wu, Y. Li, et al., Dynamic isotropic design and decentralized active control of a six-axis vibration isolator via Stewart platform, Mech. Mach. Theory, vol. 117, pp. 244–252, 2017. DOI: 10.1016/j.mechmachtheory.2017.07.017.
  • R. Shyam, N. Ahmad, R. Ranganath et al., Design of a dynamically isotropic Stewart-Gough platform for passive micro-vibration isolation in spacecraft using optimization, J. Spacecraft Technol., vol. 30, no. 2, pp. 1–8, 2019.
  • Z. Wu, X. Jing, B. Sun et al., A 6DOF passive vibration isolator using X-shape supporting structures, J. Sound Vib., vol. 380, pp. 90–111, 2016. DOI: 10.1016/j.jsv.2016.06.004.
  • F. Hu and X. Jing, A 6-DOF passive vibration isolator based on Stewart structure with X-shaped legs, Nonlinear Dyn., vol. 91, no. 1, pp. 157–185, 2018. DOI: 10.1007/s11071-017-3862-x.
  • J. Zhou, K. Wang, D. Xu, et al., A six degrees-of-freedom vibration isolation platform supported by a hexapod of quasi-zero-stiffness struts, J. Vib. Acoust., vol. 139, no. 3, pp. 0345021, 2017. DOI: 10.1115/1.4035715.
  • Y. Zheng, Q. Li, B. Yan, et al., A Stewart isolator with high-static-low-dynamic stiffness struts based on negative stiffness magnetic springs, J. Sound Vib., vol. 422, pp. 390–408, 2018. DOI: 10.1016/j.jsv.2018.02.046.
  • X. J. Yang and H. M. Srivastava, An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., vol. 29, no. 1–3, pp. 499–504, 2015. DOI: 10.1016/j.cnsns.2015.06.006.
  • H. Jo and H. Yabuno, Amplitude reduction of primary resonance of nonlinear oscillator by a dynamic vibration absorber using nonlinear coupling, Nonlinear Dyn., vol. 55, no. 1–2, pp. 67–78, 2009. DOI: 10.1007/s11071-008-9345-3.
  • P. Kakou and O. Barry, Simultaneous vibration reduction and energy harvesting of a nonlinear oscillator using a nonlinear electromagnetic vibration absorber-inerter, Mech. Syst. Signal Process, vol. 156, pp. 107607, 2021. DOI: 10.1016/j.ymssp.2021.107607.
  • N. B. Roozen, D. Urbán, E. A. Piana et al., On the use of dynamic vibration absorbers to counteract the loss of sound insulation due to mass-spring-mass resonance effects in external thermal insulation composite systems, Appl. Acoust., vol. 178, no. 5, pp. 107999, 2021. DOI: 10.1016/j.apacoust.2021.107999.
  • S. Lin, Y. Zhang, Y. Liang, et al., Bandgap characteristics and wave attenuation of metamaterials based on negative-stiffness dynamic vibration absorbers, J. Sound Vib., vol. 502, no. 2, pp. 116088, 2021. DOI: 10.1016/j.jsv.2021.116088.
  • J. Zhou, D. Xu, and S. Bishop, A torsion quasi-zero stiffness vibration isolator, J. Sound Vib., vol. 338, pp. 121–133, 2015. DOI: 10.1016/j.jsv.2014.10.027.
  • X. Gao and H. D. Teng, Dynamics and isolation properties for a pneumatic near-zero frequency vibration isolator with nonlinear stiffness and damping, Nonlinear Dyn., vol. 102, no. 4, pp. 2205–2223, 2020. DOI: 10.1007/s11071-020-06063-x.
  • Z. Hao, and Q. Cao, The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness, J. Sound Vib., vol. 340, pp. 61–79, 2015. DOI: 10.1016/j.jsv.2014.11.038.
  • Z. Wu, X. Jing, J. Bian, et al., Vibration isolation by exploring bio-inspired structural nonlinearity, Bioinspir. Biomim., vol. 10, no. 5, pp. 056015, 2015.
  • X. T. Sun, X. J. Jing, J. Xu et al., Vibration isolation via a scissor-like structured platform, J. Sound Vib., vol. 333, no. 9, pp. 2404–2420, 2014. DOI: 10.1016/j.jsv.2013.12.025.
  • H. Dai, X. Jing, Y. Wang, et al., Post-capture vibration suppression of spacecraft via a bio-inspired isolation system, Mech. Syst. Signal Process, vol. 105, pp. 214–240, 2018. DOI: 10.1016/j.ymssp.2017.12.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.