381
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Dynamic crushing behavior of multi-layered hybrid foam-filled composite graded lattice sandwich panels

, , , , , ORCID Icon & show all
Pages 6694-6704 | Received 17 Jun 2021, Accepted 18 Sep 2021, Published online: 18 Oct 2021

References

  • L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, 1997.
  • H. N. G. Wadley, Multifunctional periodic cellular metals, Philos. Trans. A Math. Phys. Eng. Sci., vol. 364, no. 1838, pp. 31–68, 2006. DOI: 10.1098/rsta.2005.1697.
  • H. Zhang, F. F. Sun, H. L. Fan, et al., Free vibration behaviors of carbon fibre reinforced lattice-core sandwich cylinder, Compos. Sci. Technol., vol. 100, pp. 26–33, 2014. DOI: 10.1016/j.compscitech.2014.05.030.
  • Z. Zhang, H. Lei, M. Xu, et al., Out-of-plane compressive performance and energy absorption of multi-layer graded sinusoidal corrugated sandwich panels, Mater. Des., vol. 178, pp. 107858, 2019. DOI: 10.1016/j.matdes.2019.107858.
  • B. Han, K. Qin, B. Yu, et al., Honeycomb–corrugation hybrid as a novel sandwich core for significantly enhanced compressive performance, Mater. Des., vol. 93, pp. 271–282, 2016. DOI: 10.1016/j.matdes.2015.12.158.
  • J. Liu, J. Liu, J. Mei, et al., Investigation on manufacturing and mechanical behavior of all-composite sandwich structure with Y-shaped cores, Compos. Sci. Technol., vol. 159, pp. 87–102, 2018. DOI: 10.1016/j.compscitech.2018.01.026.
  • H. Li, H. Wu, T. Zhang, et al., A nonlinear dynamic model of fibre-reinforced composite thin plate with temperature dependence in thermal environment, Compos. B Eng., vol. 162, pp. 206–218, 2019. DOI: 10.1016/j.compositesb.2018.10.070.
  • Z. Zhao, P. Liu, C. Chen, et al., Modeling the transverse tensile and compressive failure behavior of triaxially braided composites, Compos. Sci. Technol., vol. 172, pp. 96–107, 2019. DOI: 10.1016/j.compscitech.2019.01.008.
  • J. Zhang, Q. Qin, and T. J. Wang, Compressive strengths and dynamic response of corrugated metal sandwich plates with unfilled and foam-filled sinusoidal plate cores, Acta Mech., vol. 224, no. 4, pp. 759–775, 2013. DOI: 10.1007/s00707-012-0770-5.
  • A. Ajdari, H. Nayeb-Hashemi, and A. Vaziri, Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures, Int. J. Solids Struct., vol. 48, no. 3–4, pp. 506–516, 2011. DOI: 10.1016/j.ijsolstr.2010.10.018.
  • S. Hou, C. Shu, S. Zhao, et al., Experimental and numerical studies on multi-layered corrugated sandwich panels under crushing loading, Compos. Struct., vol. 126, pp. 371–385, 2015. DOI: 10.1016/j.compstruct.2015.02.039.
  • J. S. Yang, J. Xiong, L. Ma, et al., Modal response of all-composite corrugated sandwich cylindrical shells, Compos. Sci. Technol., vol. 115, pp. 9–20, 2015. DOI: 10.1016/j.compscitech.2015.04.015.
  • J. S. Yang, D. L. Li, L. Ma, et al., Numerical static and dynamic analyses of improved equivalent models for corrugated sandwich structures, Mech. Adv. Mater. Struct., vol. 26, no. 18, pp. 1556–1567, 2019. DOI: 10.1080/15376494.2018.1444232.
  • G. Li, Y. Fang, P. Hao, et al., Three-point bending deflection and failure mechanism map of sandwich beams with second-order hierarchical corrugated truss core, J. Sandw. Struct. Mater., vol. 19, no. 1, pp. 83–107, 2017. DOI: 10.1177/1099636215622052.
  • X. Li, S. Li, Z. Wang, et al., Response of aluminum corrugated sandwich panels under foam projectile impact–Experiment and numerical simulation, J. Sandw. Struct Mater., vol. 19, no. 5, pp. 595–615, 2017. DOI: 10.1177/1099636216630503.
  • L. Dong, V. Deshpande, and H. Wadley, Mechanical response of Ti–6Al–4V octet-truss lattice structures, Int. J. Solid Struct., vol. 60–61, pp. 107–124, 2015. DOI: 10.1016/j.ijsolstr.2015.02.020.
  • X. Wang, K. Wei, Y. Tao, et al., Thermal protection system integrating graded insulation materials and multilayer ceramic matrix composite cellular sandwich panels, Compos. Struct., vol. 209, pp. 523–534, 2019. DOI: 10.1016/j.compstruct.2018.11.004.
  • Z. Xue and J. W. Hutchinson, A comparative study of impulse-resistant metal sandwich plates, Int. J. Impact Eng., vol. 30, no. 10, pp. 1283–1305, 2004. DOI: 10.1016/j.ijimpeng.2003.08.007.
  • N. A. Fleck and V. S. Deshpande, The resistance of clamped sandwich beams to shock loading, J. Appl. Mech., vol. 71, no. 3, pp. 386–401, 2004. DOI: 10.1115/1.1629109.
  • D. D. Radford, N. A. Fleck, and V. S. Deshpande, The response of clamped sandwich beams subjected to shock loading, Int. J. Impact Eng., vol. 32, no. 6, pp. 968–987, 2006. DOI: 10.1016/j.ijimpeng.2004.08.007.
  • G. Q. Zhang, B. Wang, L. Ma, et al., Energy absorption and low velocity impact response of polyurethane foam filled pyramidal lattice core sandwich panels, Compos. Struct., vol. 108, pp. 304–310, 2014. DOI: 10.1016/j.compstruct.2013.09.040.
  • X. Wu, K. Xiao, Q. Yin, et al., Experimental study on dynamic compressive behaviour of sandwich panel with shear thickening fluid filled pyramidal lattice truss core, Int. J. Mech. Sci., vol. 138–139, pp. 467–475, 2018. DOI: 10.1016/j.ijmecsci.2018.02.029.
  • W. Huang, Z. Fan, W. Zhang, et al., Impulsive response of composite sandwich structure with tetrahedral truss core, Compos. Sci. Technol., vol. 176, pp. 17–28, 2019. DOI: 10.1016/j.compscitech.2019.03.020.
  • S. Nikbakht, S. Kamarian, and M. Shakeri, A review on optimization of composite structures Part II: functionally graded materials, Compos. Struct., vol. 214, pp. 83–102, 2019. DOI: 10.1016/j.compstruct.2019.01.105.
  • N. A. Apetre, B. V. Sankar, and D. R. Ambur, Analytical modeling of sandwich beams with functionally graded core, J. Sandw. Struct. Mater., vol. 10, no. 1, pp. 53–74, 2008. DOI: 10.1177/1099636207081111.
  • E. Wang, N. Gardner, and A. Shukla, The blast resistance of sandwich composites with stepwise graded cores, Int. J. Solids Struct., vol. 46, no. 18–19, pp. 3492–3502, 2009. DOI: 10.1016/j.ijsolstr.2009.06.004.
  • L. Zhang, R. Hebert, J. T. Wright, et al., Dynamic response of corrugated sandwich steel plates with graded cores, Int. J. Impact Eng., vol. 65, pp. 185–194, 2014. DOI: 10.1016/j.ijimpeng.2013.11.011.
  • X. R. Liu, X. G. Tian, T. J. Lu, et al., Sandwich plates with functionally graded metallic foam cores subjected to air blast loading, Int. J. Mech. Sci., vol. 84, pp. 61–72, 2014. DOI: 10.1016/j.ijmecsci.2014.03.021.
  • J. Zheng, Q. Qin, and T. J. Wang, Impact plastic crushing and design of density-graded cellular materials, Mech. Mater., vol. 94, pp. 66–78, 2016. DOI: 10.1016/j.mechmat.2015.11.014.
  • S. Li, X. Li, Z. Wang, et al., Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading, Compos. A Appl., vol. 80, pp. 1–12, 2016. DOI: 10.1016/j.compositesa.2015.09.025.
  • M. Liang, G. Zhang, F. Lu, et al., Blast resistance and design of sandwich cylinder with graded foam cores based on the Voronoi algorithm, Thin. Wall Struct., vol. 112, pp. 98–106, 2017. DOI: 10.1016/j.tws.2016.12.016.
  • B. T. Cao, B. Hou, H. Zhao, et al., On the influence of the property gradient on the impact behavior of graded multilayer sandwich with corrugated cores, Int. J. Impact Eng., vol. 113, pp. 98–105, 2018. DOI: 10.1016/j.ijimpeng.2017.11.017.
  • L. Yang, X. Han, L. Feng, et al., Numerical investigations on blast resistance of sandwich panels with multilayered graded hourglass lattice cores, J. Sandw. Struct. Mater., vol. 22, pp. 1099636218795382, 2018.
  • Z. Li, W. Chen, and H. Hao, Functionally graded truncated square pyramid folded structures with foam filler under dynamic crushing, Compos. B. Eng., vol. 177, pp. 107410, 2019. DOI: 10.1016/j.compositesb.2019.107410.
  • J. Xiong, A. Vaziri, L. Ma, et al., Compression and impact testing of two-layer composite pyramidal-core sandwich panels, Compos. Struct., vol. 94, no. 2, pp. 793–801, 2012. DOI: 10.1016/j.compstruct.2011.09.018.
  • B. Wang, G. Q. Zhang, S. X. Wang, et al., High velocity impact response of composite lattice core sandwich structures, Appl. Compos. Mater., vol. 21, no. 2, pp. 377–389, 2014. DOI: 10.1007/s10443-013-9345-4.
  • J. S. Yang, S. Y. Chen, S. Li, et al., Dynamic responses of hybrid lightweight composite sandwich panels with aluminium pyramidal truss cores, J. Sandw. Struct. Mater., vol. 23, no. 6, pp. 2176–2195, 2021. DOI: 10.1177/1099636220909816.
  • S. Li, J. S. Yang, R. Schmidt, et al., Compression and hysteresis responses of multilayer gradient composite lattice sandwich panels, Mar Struct., vol. 75, pp. 102845, 2021. DOI: 10.1016/j.marstruc.2020.102845.
  • ASTM: C365/C365M-05. Standard Test Method for Flatwise Compressive Properties of Sandwich Cores, ASTM Int, West Conshohocken, PA, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.