509
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Micromechanical models for predicting the mechanical properties of 3D-printed wood/PLA composite materials: A comparison with experimental data

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 6755-6767 | Received 27 Jun 2021, Accepted 18 Sep 2021, Published online: 12 Oct 2021

References

  • T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Nguyen, and D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Compos. B. Eng., vol. 143, pp. 172–196, 2018. DOI: 10.1016/j.compositesb.2018.02.012.
  • P. Parandoush, and D. Lin, A review on additive manufacturing of polymer-fiber composites, Compos. Struct., vol. 182, pp. 36–53, 2017. DOI: 10.1016/j.compstruct.2017.08.088.
  • M. K. Hausmann, et al., Complex‐shaped cellulose composites made by wet densification of 3D printed scaffolds, Adv. Funct. Mater., vol. 30, no. 4, pp. 1904127, 2020. DOI: 10.1002/adfm.201904127.
  • J. G. Sanjayan, and B. Nematollahi, 3D concrete printing for construction applications. In: J. G. Sanjayan, A. Nazari, and B. Nematollahi (eds.), 3D Concrete Printing Technology, Chap. 1, Butterworth-Heinemann, Oxford, 2019. DOI: 10.1016/B978-0-12-815481-6.00001-4.
  • J. C. Najmon, S. Raeisi, and A. Tovar, Review of additive manufacturing technologies and applications, in the aerospace industry. In: F. Froes and R. Boyer (eds.), Additive Manufacturing for the Aerospace Industry, Chap. 2, Elsevier, Amsterdam, 2019. DOI: 10.1016/B978-0-12-814062-8.00002-9.
  • C. M. González-Henríquez, M. A. Sarabia-Vallejos, and J. Rodriguez-Hernandez, Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications, Prog. Polym. Sci., vol. 94, pp. 57–116, 2019. DOI: 10.1016/j.progpolymsci.2019.03.001.
  • Z. Gu, J. Fu, H. Lin, and Y. He, Development of 3D bioprinting: From printing methods to biomedical applications, Asian J Pharm Sci., vol. 15, no. 5, pp. 529–557, 2020. DOI: 10.1016/j.ajps.2019.11.003.
  • R. Leal, et al., Additive manufacturing tooling for the automotive industry, Int. J. Adv. Manuf. Technol., vol. 92, no. 5–8, pp. 1671–1676, 2017. DOI: 10.1007/s00170-017-0239-8.
  • P. F. Jacobs, Rapid prototyping & manufacturing: fundamentals of stereolithography, J. Manuf. Syst., vol. 12, no. 5, pp. 430–433, 1993. DOI: 10.1016/0278-6125(93)90311-G.
  • B. N. Turner, and S. A. Gold, A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness, Rapid Prototyp. J., vol. 21, no. 3, pp. 250–261, 2015. DOI: 10.1108/RPJ-02-2013-0017.
  • N. Ayrilmis, M. Kariž, and M. K. Kuzman, Effect of wood flour content on surface properties of 3D printed materials produced from wood flour/PLA filament, Int. J. Polym. Anal. Charact., vol. 24, no. 7, pp. 659–666, 2019. DOI: 10.1080/1023666X.2019.1651547.
  • N. Ayrilmis, M. Kariz, J. H. Kwon, and M. K. Kuzman, Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials, Int. J. Adv. Manuf. Technol., vol. 102, no. 5–8, pp. 2195–2200, 2019. DOI: 10.1007/s00170-019-03299-9.
  • V. K. Balla, K. H. Kate, J. Satyavolu, P. Singh, and J. G. D. Tadimeti, Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects, Compos. B. Eng., vol. 174, pp. 106956, 2019. DOI: 10.1016/j.compositesb.2019.106956.
  • M. Kariz, M. Sernek, M. Obućina, and M. K. Kuzman, Effect of wood content in FDM filament on properties of 3D printed parts, Mater. Today Commun., vol. 14, pp. 135–140, 2018. DOI: 10.1016/j.mtcomm.2017.12.016.
  • M. K. Kuzman, N. Ayrilmis, M. Sernek, and M. Kariz, Effect of selected printing settings on viscoelastic behaviour of 3D printed polymers with and without wood, Mater. Res. Express ., vol. 6, no. 10, pp. 105362, 2019. DOI: 10.1088/2053-1591/ab411c.
  • D. Stoof, K. Pickering, and Y. Zhang, Fused deposition modelling of natural fibre/polylactic acid composites, J. Compos. Sci., vol. 1, no. 1, pp. 8, 2017. DOI: 10.3390/jcs1010008.
  • M. Milosevic, D. Stoof, and K. L. Pickering, Characterizing the mechanical properties of fused deposition modelling natural fiber recycled polypropylene composites, J. Compos. Sci., vol. 1, no. 1, pp. 7, 2017. DOI: 10.3390/jcs1010007.
  • D. Depuydt, et al., Production and characterization of bamboo and flax fiber reinforced polylactic acid filaments for fused deposition modeling (FDM), Polym. Compos., vol. 40, no. 5, pp. 1951–1963, 2019. DOI: 10.1002/pc.24971.
  • J. Li, J. Li, D. Feng, J. Zhao, J. Sun, and D. Li, Comparative study on properties of polylactic acid nanocomposites with cellulose and chitin nanofibers extracted from different raw materials, J. Nanomater., vol. 2017, no. 3, pp. 1–11, 2017. DOI: 10.1155/2017/7193263.
  • ALe Duigou, A. Barbé, E. Guillou, and M. Castro, 3D printing of continuous flax fibre reinforced biocomposites for structural applications, Mater. Des., vol. 180, pp. 107884, 2019. DOI: 10.1016/j.matdes.2019.107884.
  • H. Zhang, D. Liu, T. Huang, Q. Hu, and H. Lammer, Three-dimensional printing of continuous flax fiber-reinforced thermoplastic composites by five-axis machine, Mater., vol. 13, no. 7, pp. 1678, 2020. DOI: 10.3390/ma13071678.
  • S. Kuschmitz, A. Schirp, J. Busse, H. Watschke, C. Schirp, and T. Vietor, Development and processing of continuous flax and carbon fiber-reinforced thermoplastic composites by a modified material extrusion process, Mater., vol. 14, no. 9, pp. 2332, 2021. DOI: 10.3390/ma14092332.
  • R. Matsuzaki, et al., Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation, Sci. Rep., vol. 6, pp. 23058, 2016. DOI: 10.1038/srep23058.
  • A. Grimaldi, and R. Luciano, Solids, tensile stiffness and strength of fiber-reinforced concrete, J. Mech. Phys. Solids., vol. 48, no. 9, pp. 1987–2008, 2000. DOI: 10.1016/S0022-5096(99)00079-4.
  • A. Reuss, Calculation of the yield strength of mixed crystals due to the plasticity condition for single crystals, J. Appl. Math. Mech., vol. 9, no. 1, pp. 49–58, 1929. DOI: 10.1002/zamm.19290090104.
  • W. Voigt, On the relation between the elasticity constants of isotropic bodies, Ann. Phys., vol. 274, no. 12, pp. 573–587, 1889. DOI: 10.1002/andp.18892741206.
  • Z. Hashin, and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids., vol. 11, no. 2, pp. 127–140, 1963. DOI: 10.1016/0022-5096(63)90060-7.
  • Z. A. Hashin, and S. Shtrikman, On some variational principles in anisotropic and nonhomogeneous elasticity, J. Mech. Phys. Solids., vol. 10, no. 4, pp. 335–342, 1962. DOI: 10.1016/0022-5096(62)90004-2.
  • L. Dormieux, A. Molinari, and D. Kondo, Micromechanical approach to the behavior of poroelastic materials, J. Mech. Phys. Solids., vol. 50, no. 10, pp. 2203–2231, 2002. DOI: 10.1016/S0022-5096(02)00008-X.
  • J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Math. Phys. Eng. Sci., vol. 241, no. 1226, pp. 376–396, 1957. DOI: 10.1098/rspa.1957.0133.
  • T. Mori, and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., vol. 21, no. 5, pp. 571–574, 1973. DOI: 10.1016/0001-6160(73)90064-3.
  • Y. Benveniste, A new approach to the application of Mori-Tanaka’s theory in composite materials, Mech. Mater., vol. 6, no. 2, pp. 147–157, 1987. DOI: 10.1016/0167-6636(87)90005-6.
  • R. Hill, A self-consistent mechanics of composite materials, J. Mech. Phys. Solids., vol. 13, no. 4, pp. 213–222, 1965. DOI: 10.1016/0022-5096(65)90010-4.
  • A. N. Norris, A differential scheme for the effective moduli of composites, Mech. Mater., vol. 4, no. 1, pp. 1–16, 1985. DOI: 10.1016/0167-6636(85)90002-X.
  • F. Van Der Klift, Y. Koga, A. Todoroki, M. Ueda, Y. Hirano, and R. Matsuzaki, 3D printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens, Open J. Compos. Mater., vol. 6, no. 1, pp. 18–27, 2016. DOI: 10.4236/ojcm.2016.61003.
  • G. W. Melenka, B. K. Cheung, J. S. Schofield, M. R. Dawson, and J. P. Carey, Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures, Compos. Struct., vol. 153, pp. 866–875, 2016. DOI: 10.1016/j.compstruct.2016.07.018.
  • H. Al Abadi, H. T. Thai, V. Paton-Cole, and V. I. Patel, Elastic properties of 3D printed fibre-reinforced structures, Compos. Struct., vol. 193, pp. 8–18, 2018. DOI: 10.1016/j.compstruct.2018.03.051.
  • E. Polyzos, A. Katalagarianakis, D. Polyzos, D. Van Hemelrijck, and L. Pyl, A multi-scale analytical methodology for the prediction of mechanical properties of 3D-printed materials with continuous fibres, Addit. Manuf., vol. 36, pp. 101394, 2020. DOI: 10.1016/j.addma.2020.101394.
  • A. Zaoui, Continuum micromechanics: survey, J. Eng. Mech., vol. 128, no. 8, pp. 808–816, 2002. DOI: 10.1061/(ASCE)0733-9399(2002)128:8(808).
  • R. W. Lewis, and B. A. Schrefler, The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd ed., John Wiley & Sons, New York, 1998. ISBN: 0-471-92809-7.
  • W. Q. Shen, and J. F. Shao, Some micromechanical models of elastoplastic behaviors of porous geomaterials, J. Rock Mech. Geotech. Eng., vol. 9, no. 1, pp. 1–17, 2017. DOI: 10.1016/j.jrmge.2016.06.011.
  • L. Dormieux, D. Kondo, and F. J. Ulm, Microporomechanics, John Wiley & Sons, New York, 2006. DOI: 10.1002/0470032006.
  • A. Zaoui, Structural morphology and constitutive behaviour of microheterogeneous materials. In: P. Suquet (ed.), Continuum Micromechanics, Chap. 6, Springer, New York, 1997. DOI: 10.1007/978-3-7091-2662-2_6.
  • S. Nemat-Nasser, and M. Hori, Micromechanics: overall Properties of Heterogeneous Materials, 2nd ed., North Holland, New York, 1998. ISBN: 9780444500847.
  • P. J. Withers, The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials, Philos. Mag. A., vol. 59, no. 4, pp. 759–781, 1989. DOI: 10.1080/01418618908209819.
  • I. Sevostianov, N. Yilmaz, V. Kushch, and V. Levin, Effective elastic properties of matrix composites with transversely-isotropic phases, Int J Solids Struct., vol. 42, no. 2, pp. 455–476, 2005. DOI: 10.1016/j.ijsolstr.2004.06.047.
  • V. S. Kirilyuk, and O. I. Levchuk, Stress state of a transversely isotropic medium with an arbitrarily oriented spheroidal inclusion, Int. Appl. Mech., vol. 41, no. 2, pp. 137–143, 2005. DOI: 10.1007/s10778-005-0069-5.
  • A. Giraud, Q. V. Huynh, D. Hoxha, and D. Kondo, Application of results on Eshelby tensor to the determination of effective poroelastic properties of anisotropic rocks-like composites, Int J Solids Struct., vol. 44, no. 11–12, pp. 3756–3772, 2007. DOI: 10.1016/j.ijsolstr.2006.10.019.
  • R. Roscoe, The viscosity of suspensions of rigid spheres, Br. J. Appl. Phys., vol. 3, no. 8, pp. 267–269, 1952. DOI: 10.1088/0508-3443/3/8/306.
  • S. Boucher, On the effective moduli of isotropic two-phase elastic composites, J. Compos. Mater., vol. 8, no. 1, pp. 82–89, 1974. DOI: 10.1177/002199837400800108.
  • R. McLaughlin, A study of the differential scheme for composite materials, Int. J. Eng. Sci., vol. 15, no. 4, pp. 237–244, 1977. DOI: 10.1016/0020-7225(77)90058-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.