227
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

A novel similitude method for predicting natural frequency of FG porous plates under thermal environment

ORCID Icon
Pages 6786-6802 | Received 28 Jul 2021, Accepted 21 Sep 2021, Published online: 11 Nov 2021

References

  • B. Saleh et al., 30 Years of functionally graded materials: an overview of manufacturing methods, applications and future challenges, Compos. Part B: Eng., vol. 201, pp. 108376, 2020. DOI: 10.1016/j.compositesb.2020.108376.
  • D.K. Jha, T. Kant, and R.K. Singh, A critical review of recent research on functionally graded plates, Compos. Struct., vol. 96, pp. 833–849, 2013. DOI: 10.1016/j.compstruct.2012.09.001.
  • V. Birman and L.W. Byrd, Modeling and analysis of functionally graded materials and structures, Appl. Mech. Rev., vol. 60, no. 5, pp. 195–216, 2007. DOI: 10.1115/1.2777164.
  • K. Swaminathan and D.M. Sangeetha, Thermal analysis of FGM plates – a critical review of various modeling techniques and solution methods, Compos. Struct., vol. 160, pp. 43–60, 2017. DOI: 10.1016/j.compstruct.2016.10.047.
  • K. Swaminathan, D.T. Naveenkumar, A.M. Zenkour, and E. Carrera, Stress, vibration and buckling analyses of FGM plates—a state-of-the-art review, Compos. Struct., vol. 120, pp. 10–31, 2015. DOI: 10.1016/j.compstruct.2014.09.070.
  • H.-L. Dai, Y.-N. Rao, and T. Dai, A review of recent researches on FGM cylindrical structures under coupled physical interactions, 2000–2015, Compos. Struct., vol. 152, pp. 199–225, 2016. DOI: 10.1016/j.compstruct.2016.05.042.
  • J. Zhu, Z. Lai, Z. Yin, J. Jeon, and S. Lee, Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy, Mater. Chem. Phys., vol. 68, no. 1–3, pp. 130–135, 2001. DOI: 10.1016/S0254-0584(00)00355-2.
  • N. Wattanasakulpong, B. Gangadhara Prusty, D.W. Kelly, and M. Hoffman, Free vibration analysis of layered functionally graded beams with experimental validation, Mater. Des., vol. 36, pp. 182–190, 2012. DOI: 10.1016/j.matdes.2011.10.049.
  • N. Wattanasakulpong and V. Ungbhakorn, Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities, Aerosp. Sci. Technol., vol. 32, no. 1, pp. 111–120, 2014. DOI: 10.1016/j.ast.2013.12.002.
  • G.-L. She, Y.-R. Ren, F.-G. Yuan, and W.-S. Xiao, On vibrations of porous nanotubes, Int. J. Eng. Sci., vol. 125, pp. 23–35, 2018. DOI: 10.1016/j.ijengsci.2017.12.009.
  • G.-L. She, F.-G. Yuan, Y.-R. Ren, H.-B. Liu, and W.-S. Xiao, Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory, Compos. Struct., vol. 203, pp. 614–623, 2018. DOI: 10.1016/j.compstruct.2018.07.063.
  • G.-L. She, F.-G. Yuan, B. Karami, Y.-R. Ren, and W.-S. Xiao, On nonlinear bending behavior of FG porous curved nanotubes, Int. J. Eng. Sci., vol. 135, pp. 58–74, 2019. DOI: 10.1016/j.ijengsci.2018.11.005.
  • M.H. Jalaei and Ö. Civalek, On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam, Int. J. Eng. Sci., vol. 143, pp. 14–32, 2019. DOI: 10.1016/j.ijengsci.2019.06.013.
  • H. Shahverdi and M.R. Barati, Vibration analysis of porous functionally graded nanoplates, Int. J. Eng. Sci., vol. 120, pp. 82–99, 2017. DOI: 10.1016/j.ijengsci.2017.06.008.
  • B. Karami, D. Shahsavari, and M. Janghorban, On the dynamics of porous doubly-curved nanoshells, Int. J. Eng. Sci., vol. 143, pp. 39–55, 2019. DOI: 10.1016/j.ijengsci.2019.06.014.
  • A.M. Zenkour, A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities, Compos. Struct., vol. 201, pp. 38–48, 2018. DOI: 10.1016/j.compstruct.2018.05.147.
  • H. Ait Atmane, A. Tounsi, and F. Bernard, Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations, Int. J. Mech. Mater. Des., vol. 13, no. 1, pp. 71–84, 2017. DOI: 10.1007/s10999-015-9318-x.
  • S.K. Jalali, M.J. Beigrezaee, and N.M. Pugno, Is it always worthwhile to resolve the governing equations of plate theories for graded porosity along the thickness?, Compos. Struct., vol. 256, pp. 112960, 2021. DOI: 10.1016/j.compstruct.2020.112960.
  • X.-L. Huang, L. Dong, G.-Z. Wei, and D.-Y. Zhong, Nonlinear free and forced vibrations of porous sigmoid functionally graded plates on nonlinear elastic foundations, Compos. Struct., vol. 228, pp. 111326, 2019. DOI: 10.1016/j.compstruct.2019.111326.
  • P.A. Demirhan and V. Taskin, Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach, Compos. Part B: Eng., vol. 160, pp. 661–676, 2019. DOI: 10.1016/j.compositesb.2018.12.020.
  • M.C. Kiran, S.C. Kattimani, and M. Vinyas, Porosity influence on structural behaviour of skew functionally graded magneto-electro-elastic plate, Compos. Struct., vol. 191, pp. 36–77, 2018. DOI: 10.1016/j.compstruct.2018.02.023.
  • M.C. Kiran and S.C. Kattimani, Assessment of porosity influence on vibration and static behaviour of functionally graded magneto-electro-elastic plate: a finite element study, Eur. J. Mech. A Solids, vol. 71, pp. 258–277, 2018. DOI: 10.1016/j.euromechsol.2018.04.006.
  • S. Kitipornchai, D. Chen, and J. Yang, Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets, Mater. Des., vol. 116, pp. 656–665, 2017. DOI: 10.1016/j.matdes.2016.12.061.
  • L.B. Nguyen, N.V. Nguyen, C.H. Thai, A. Ferreira, and H. Nguyen-Xuan, An isogeometric Bézier finite element analysis for piezoelectric FG porous plates reinforced by graphene platelets, Compos. Struct., vol. 214, pp. 227–245, 2019. DOI: 10.1016/j.compstruct.2019.01.077.
  • M.R. Anamagh and B. Bediz, Free vibration and buckling behavior of functionally graded porous plates reinforced by graphene platelets using spectral Chebyshev approach, Compos. Struct., vol. 253, pp. 112765, 2020. DOI: 10.1016/j.compstruct.2020.112765.
  • R. Moradi-Dastjerdi, K. Behdinan, B. Safaei, and Z. Qin, Buckling behavior of porous CNT-reinforced plates integrated between active piezoelectric layers, Eng. Struct., vol. 222, pp. 111141, 2020. DOI: 10.1016/j.engstruct.2020.111141.
  • M. Mohammadi, M. Bamdad, K. Alambeigi, R. Dimitri, and F. Tornabene, Electro-elastic response of cylindrical sandwich pressure vessels with porous core and piezoelectric face-sheets, Compos. Struct., vol. 225, pp. 111119, 2019. DOI: 10.1016/j.compstruct.2019.111119.
  • A. Mojahedin, M. Jabbari, A.R. Khorshidvand, and M.R. Eslami, Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory, Thin-Wall. Struct., vol. 99, pp. 83–90, 2016. DOI: 10.1016/j.tws.2015.11.008.
  • H. Li, F. Pang, H. Chen, and Y. Du, Vibration analysis of functionally graded porous cylindrical shell with arbitrary boundary restraints by using a semi analytical method, Compos. Part B: Eng., vol. 164, pp. 249–264, 2019. DOI: 10.1016/j.compositesb.2018.11.046.
  • T. Dai, H.-L. Dai, and Z.-Y. Lin, Multi-field mechanical behavior of a rotating porous FGMEE circular disk with variable thickness under hygrothermal environment, Compos. Struct., vol. 210, pp. 641–656, 2019. DOI: 10.1016/j.compstruct.2018.11.077.
  • T. Dai, Y. Yang, H.-L. Dai, H. Tang, and Z.-Y. Lin, Hygrothermal mechanical behaviors of a porous FG-CRC annular plate with variable thickness considering aggregation of CNTs, Compos. Struct., vol. 215, pp. 198–213, 2019. DOI: 10.1016/j.compstruct.2019.02.061.
  • Bo Madsen, Anders Thygesen, and Hans Lilholt, Plant fibre composites – porosity and volumetric interaction, Compos. Sci. Technol., vol. 67, no. 7–8, pp. 1584–1600, 2007. DOI: 10.1016/j.compscitech.2006.07.009.
  • L. Zhou, A new structural similitude method for laminated composite cylinders, Thin-Wall. Struct., vol. 164, pp. 107920, 2021. DOI: 10.1016/j.tws.2021.107920.
  • Y. Frostig and G.J. Simitses, Structural similitude and scaling laws for sandwich beams, AIAA J., vol. 40, no. 4, pp. 765–773, 2002. DOI: 10.2514/2.1711.
  • J. Rezaeepazhand and G.J. Simitses, Structural similitude for vibration response of laminated cylindrical shells with double curvature, Compos. Part B: Eng., vol. 28, no. 3, pp. 195–200, 1997. DOI: 10.1016/S1359-8368(96)00046-7.
  • G.J. Simitses, Structural similitude for flat laminated surfaces, Compos. Struct., vol. 51, no. 2, pp. 191–194, 2001. DOI: 10.1016/S0263-8223(00)00144-6.
  • Esmaeel Ghafari and Jalil Rezaeepazhand, Vibration analysis of rotating composite beams using polynomial based dimensional reduction method, Int. J. Mech. Sci., vol. 115–116, pp. 93–104, 2016. DOI: 10.1016/j.ijmecsci.2016.06.004.
  • A.A. Yazdi, Study nonlinear vibration of cross-ply laminated plates using scale models, Polym. Compos., vol. 35, no. 4, pp. 752–758, 2014. DOI: 10.1002/pc.22718.
  • A.A. Yazdi and J. Rezaeepazhand, Applicability of small-scale models in prediction flutter pressure of delaminated composite beam-plates, Int. J. Damage Mech., vol. 22, no. 4, pp. 590–601, 2013. DOI: 10.1177/1056789512456318.
  • A.A. Yazdi and J. Rezaeepazhand, Structural similitude for vibration of delaminated composite beam-plates, KEM, vol. 417-418, pp. 749–752, 2009. DOI: 10.4028/www.scientific.net/KEM.417-418.749.
  • J. Rezaeepazhand and A.A. Yazdi, Similitude requirements and scaling laws for flutter prediction of angle-ply composite plates, Compos. Part B: Eng., vol. 42, no. 1, pp. 51–56, 2011. DOI: 10.1016/j.compositesb.2010.09.010.
  • A. Berry, O. Robin, F. Franco, S. de Rosa, and G. Petrone, Similitude laws for the sound radiation of flat orthotropic flexural panels, J. Sound Vib., vol. 489, pp. 115636, 2020. DOI: 10.1016/j.jsv.2020.115636.
  • F. Franco, A. Berry, G. Petrone, S. de Rosa, E. Ciappi, and O. Robin, Structural response of stiffened plates in similitude under a turbulent boundary layer excitation, J. Fluids Struct., vol. 98, pp. 103119, 2020. DOI: 10.1016/j.jfluidstructs.2020.103119.
  • F. Franco, O. Robin, E. Ciappi, S. de Rosa, A. Berry, and G. Petrone, Similitude laws for the structural response of flat plates under a turbulent boundary layer excitation, Mech. Syst. Sig. Process., vol. 129, pp. 590–613, 2019. DOI: 10.1016/j.ymssp.2019.04.045.
  • S. de Rosa, F. Franco, E. Ciappi, and V. Meruane, Analysis of distorted similitudes for the frequency response of composite plates, Aerotec. Missili Spaz., vol. 95, no. 1, pp. 24–31, 2016. DOI: 10.1007/BF03404711.
  • S. de Rosa, F. Franco, and T. Polito, Partial scaling of finite element models for the analysis of the coupling between short and long structural wavelengths, Mech. Syst. Sig. Process., vol. 52–53, pp. 722–740, 2015. DOI: 10.1016/j.ymssp.2014.06.007.
  • S. de Rosa, F. Franco, X. Li, and T. Polito, A similitude for structural acoustic enclosures, Mech. Syst. Sig. Process., vol. 30, pp. 330–342, 2012. DOI: 10.1016/j.ymssp.2012.01.018.
  • S. de Rosa and F. Franco, On the use of the asymptotic scaled modal analysis for time-harmonic structural analysis and for the prediction of coupling loss factors for similar systems, Mech. Syst. Sig. Process., vol. 24, no. 2, pp. 455–480, 2010. DOI: 10.1016/j.ymssp.2009.07.008.
  • S. de Rosa and F. Franco, A scaling procedure for the response of an isolated system with high modal overlap factor, Mech. Syst. Sig. Process., vol. 22, no. 7, pp. 1549–1565, 2008. DOI: 10.1016/j.ymssp.2008.01.007.
  • U. Cho, K.L. Wood, and R.H. Crawford, Online functional testing with rapid prototypes: a novel empirical similarity method, Rapid Prototyp. J., vol. 4, no. 3, pp. 128–138, 1998. DOI: 10.1108/13552549810223000.
  • A.J. Dutson, K.L. Wood, J.J. Beaman, R.H. Crawford, and D.L. Bourell, Application of similitude techniques to functional testing of rapid prototypes, Rapid Prototyp. J., vol. 9, no. 1, pp. 6–13, 2003. DOI: 10.1108/13552540310455593.
  • U. Cho, A.J. Dutson, K.L. Wood, and R.H. Crawford, An advanced method to correlate scale models with distorted configurations, J. Mech. Des., vol. 127, no. 1, pp. 78–85, 2005. DOI: 10.1115/1.1825044.
  • R.E. Oshiro and M. Alves, Scaling impacted structures, Arch. Appl. Mech., vol. 74, no. 1–2, pp. 130–145, 2004. DOI: 10.1007/s00419-004-0343-8.
  • M. Alves and R.E. Oshiro, Scaling impacted structures when the prototype and the model are made of different materials, Int. J. Solids Struct., vol. 43, no. 9, pp. 2744–2760, 2006. DOI: 10.1016/j.ijsolstr.2005.03.003.
  • L. Li, Z. Luo, F. He, X. Zhao, and J. Liu, A partial similitude method considering variable powers in scaling laws and applied to rotor-bearing systems, Int. J. Mech. Sci., vol. 186, pp. 105892, 2020. DOI: 10.1016/j.ijmecsci.2020.105892.
  • Z. Luo, L. Li, F. He, and X. Yan, Partial similitude for dynamic characteristics of rotor systems considering gravitational acceleration, Mech. Mach. Theory, vol. 156, pp. 104142, 2021. DOI: 10.1016/j.mechmachtheory.2020.104142.
  • Y. Zhu, Y. Wang, Z. Luo, Q. Han, and D. Wang, Similitude design for the vibration problems of plates and shells: a review, Front. Mech. Eng., vol. 12, no. 2, pp. 253–264, 2017. DOI: 10.1007/s11465-017-0418-1.
  • A. Casaburo, G. Petrone, F. Franco, and S. de Rosa, A review of similitude methods for structural engineering, Appl. Mech. Rev., vol. 71, no. 3, pp. 1–32, 2019. DOI: 10.1115/1.4043787.
  • C.P. Coutinho, A.J. Baptista, and J. Dias Rodrigues, Reduced scale models based on similitude theory: a review up to 2015, Eng. Struct., vol. 119, pp. 81–94, 2016. DOI: 10.1016/j.engstruct.2016.04.016.
  • A. Garg, M.-O. Belarbi, H.D. Chalak, and A. Chakrabarti, A review of the analysis of sandwich FGM structures, Compos. Struct., vol. 258, pp. 113427, 2021. DOI: 10.1016/j.compstruct.2020.113427.
  • M. Nemat-Alla, K.I. Ahmed, and I. Hassab-Allah, Elastic–plastic analysis of two-dimensional functionally graded materials under thermal loading, Int. J. Solids Struct., vol. 46, no. 14–15, pp. 2774–2786, 2009. DOI: 10.1016/j.ijsolstr.2009.03.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.