485
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A surrogate model for real-time dynamic simulation of dielectric elastomer actuators via long short-term memory networks

, &
Pages 6860-6880 | Received 12 Jul 2021, Accepted 24 Sep 2021, Published online: 04 Nov 2021

References

  • R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, High-speed electrically actuated elastomers with strain greater than 100%, Science, vol. 287, pp. 836–839, 2000. DOI: 10.1126/science.287.5454.836.
  • F. Carpi, D. De Rossi, R. Kornbluh, R. E. Pelrine, and P. Sommer-Larsen, Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology, Elsevier, Amsterdam, 2011.
  • J. Shintake, S. Rosset, B. Schubert, D. Floreano, and H. Shea, Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators, Adv. Mater., vol. 28, pp. 231–238, 2016. DOI: 10.1002/adma.201504264.
  • S. Shian, K. Bertoldi, and D. R. Clarke, Dielectric elastomer based “grippers” for soft robotics, Adv. Mater., vol. 27, pp. 6814–6819, 2015. DOI: 10.1002/adma.201503078.
  • M. Bozlar et al., Dielectric elastomer actuators with elastomeric electrodes, Appl. Phys. Lett., vol. 101, pp. 091907, 2012.
  • R. D. Kornbluh et al., From Boots to Buoys: promises and Challenges of Dielectric Elastomer Energy Harvesting, Electroactivity in Polymeric Materials, Springer, Berlin, pp. 67–93, 2012.
  • J. Y. Sun, C. Keplinger, G. M. Whitesides, and Z. Suo, Ionic skin, Adv. Mater., vol. 26, pp. 7608–7614, 2014. DOI: 10.1002/adma.201403441.
  • D. K. Vu, P. Steinmann, and G. Possart, Numerical simulation of nonlinear electro-elastostatics, PAMM, vol. 7, pp. 1090707–1090708, 2007. DOI: 10.1002/pamm.200700543.
  • D. Vu and P. Steinmann, On the spatial and material motion problems in nonlinear electro-elastostatics with consideration of free space, Math. Mech. Solids, vol. 17, pp. 803–823, 2012. DOI: 10.1177/1081286511430161.
  • A. K. Sharma and M. M. Joglekar, A numerical framework for modeling anisotropic dielectric elastomers, Comput. Methods Appl. Mech. Eng., vol. 344, pp. 402–420, 2019. DOI: 10.1016/j.cma.2018.10.005.
  • C. Kadapa and M. Hossain, A robust and computationally efficient finite element framework for coupled electromechanics, Comput. Methods Appl. Mech. Eng., vol. 372, pp. 113443, 2020. DOI: 10.1016/j.cma.2020.113443.
  • D. L. Henann, S. A. Chester, and K. Bertoldi, Modeling of dielectric elastomers: Design of actuators and energy harvesting devices, J. Mech. Phys. Solids, vol. 61, pp. 2047–2066, 2013. DOI: 10.1016/j.jmps.2013.05.003.
  • R. R. Craig Jr. and M. C. Bampton, Coupling of substructures for dynamic analyses, AIAA J., vol. 6, pp. 1313–1319, 1968. DOI: 10.2514/3.4741.
  • G. Kerschen and J.-C. Golinval, Physical interpretation of the proper orthogonal modes using the singular value decomposition, J. Sound Vib., vol. 249, pp. 849–865, 2002. DOI: 10.1006/jsvi.2001.3930.
  • H. Kim and M. Cho, Two-level scheme for selection of primary degrees of freedom and semi-analytic sensitivity based on the reduced system, Comput. Methods Appl. Mechan. Eng., vol. 195, pp. 4244–4268, 2006. DOI: 10.1016/j.cma.2005.08.004.
  • J. Lee and M. Cho, An interpolation-based parametric reduced order model combined with component mode synthesis, Comput. Methods Appl. Mechan. Eng., vol. 319, pp. 258–286, 2017. DOI: 10.1016/j.cma.2017.02.010.
  • S. Im, E. Kim, and M. Cho, Reduction process based on proper orthogonal decomposition for dual formulation of dynamic substructures, Comput. Mech., vol. 64, pp. 1237–1257, 2019. DOI: 10.1007/s00466-019-01702-6.
  • A. K. Noor and J. M. Peters, Reduced basis technique for nonlinear analysis of structures, AIAA J., vol. 18, pp. 455–462, 1980. DOI: 10.2514/3.50778.
  • P. Krysl, S. Lall, and J. E. Marsden, Dimensional model reduction in non‐linear finite element dynamics of solids and structures, Int. J. Numer. Methods Eng., vol. 51, pp. 479–504, 2001. DOI: 10.1002/nme.167.
  • D. Amsallem, J. Cortial, K. Carlberg, and C. Farhat, A method for interpolating on manifolds structural dynamics reduced‐order models, Int. J. Numer. Methods Eng., vol. 80, pp. 1241–1258, 2009. DOI: 10.1002/nme.2681.
  • P. Tiso, E. Jansen, and M. Abdalla, Reduction method for finite element nonlinear dynamic analysis of shells, AIAA J., vol. 49, pp. 2295–2304, 2011. DOI: 10.2514/1.J051003.
  • E. Kim and M. Cho, Equivalent model construction for a non-linear dynamic system based on an element-wise stiffness evaluation procedure and reduced analysis of the equivalent system, Comput. Mech., vol. 60, pp. 709–724, 2017. DOI: 10.1007/s00466-017-1435-y.
  • L. Zanon and K. Veroy-Grepl, The reduced basis method applied to a finite deformation problem in elasticity, Proceedings of 3rd ECCOMAS Young Investigators Conference, 2015.
  • A. Radermacher and S. Reese, POD‐based model reduction with empirical interpolation applied to nonlinear elasticity, Int. J. Numer. Methods Eng., vol. 107, pp. 477–495, 2016. DOI: 10.1002/nme.5177.
  • K. Carlberg, C. Bou‐Mosleh, and C. Farhat, Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations, Int. J. Numer. Methods Eng., vol. 86, pp. 155–181, 2011. DOI: 10.1002/nme.3050.
  • D. Bonomi, A. Manzoni, and A. Quarteroni, A matrix discrete empirical interpolation method for the efficient model reduction of parametrized nonlinear PDEs: Application to nonlinear elasticity problems, MATHICSE, Ecole Polytechn. Fédérale de Lausanne, Lausanne, Switzerland, Tech. Rep., vol. 14, pp. 2016, 2016.
  • H. Cho, S. Shin, H. Kim, and M. Cho, Enhanced model-order reduction approach via online adaptation for parametrized nonlinear structural problems, Comput. Mech., vol. 65, pp. 331–353, 2020. DOI: 10.1007/s00466-019-01771-7.
  • J. Lee, J. Lee, H. Cho, E. Kim, and M. Cho, Reduced-order modeling of nonlinear structural dynamical systems via element-wise stiffness evaluation procedure combined with hyper-reduction, Comput. Mech., vol. 67, pp. 523–540, 2021. DOI: 10.1007/s00466-020-01946-7.
  • M. D. Spiridonakos and E. N. Chatzi, Metamodeling of dynamic nonlinear structural systems through polynomial chaos NARX models, Comput. Struct., vol. 157, pp. 99–113, 2015. DOI: 10.1016/j.compstruc.2015.05.002.
  • S. Wiewel, M. Becher, and N. Thuerey, Latent space physics: Towards learning the temporal evolution of fluid flow, Comput. Graphics Forum, vol. 38, pp. 71–82, 2019. DOI: 10.1111/cgf.13620.
  • Z. Wang, D. Xiao, F. Fang, R. Govindan, C. C. Pain, and Y. Guo, Model identification of reduced order fluid dynamics systems using deep learning, Int. J. Numer. Methods Fluids, vol. 86, pp. 255–268, 2018. DOI: 10.1002/fld.4416.
  • S. E. Ahmed, S. M. Rahman, O. San, A. Rasheed, and I. M. Navon, Memory embedded non-intrusive reduced order modeling of non-ergodic flows, Phys. Fluids, vol. 31, pp. 126602, 2019. DOI: 10.1063/1.5128374.
  • F. Tao, H. Zhang, A. Liu, and A. Y. Nee, Digital twin in industry: State-of-the-art, IEEE Trans. Ind. Informat., vol. 15, pp. 2405–2415, 2018. DOI: 10.1109/TII.2018.2873186.
  • S. S. Ravindran, A reduced‐order approach for optimal control of fluids using proper orthogonal decomposition, Int. J. Numer. Methods Fluids, vol. 34, pp. 425–448, 2000. DOI: 10.1002/1097-0363(20001115)34:5 < 425::AID-FLD67 > 3.0.CO;2-W.
  • M. Bergmann, C.-H. Bruneau, and A. Iollo, Enablers for robust POD models, Comput. Phys., vol. 228, pp. 516–538, 2009. DOI: 10.1016/j.jcp.2008.09.024.
  • V. L. Kalb and A. E. Deane, An intrinsic stabilization scheme for proper orthogonal decomposition based low-dimensional models, Phys. Fluids, vol. 19, pp. 054106, 2007. DOI: 10.1063/1.2723149.
  • I. Akhtar, A. H. Nayfeh, and C. J. Ribbens, On the stability and extension of reduced-order Galerkin models in incompressible flows, Theor. Comput. Fluid Dyn., vol. 23, pp. 213–237, 2009. DOI: 10.1007/s00162-009-0112-y.
  • M. F. Barone, I. Kalashnikova, D. J. Segalman, and H. K. Thornquist, Stable Galerkin reduced order models for linearized compressible flow, Comput. Phys., vol. 228, pp. 1932–1946, 2009.
  • C. W. Rowley, T. Colonius, and R. M. Murray, Model reduction for compressible flows using POD and Galerkin projection, Physica D, vol. 189, pp. 115–129, 2004. DOI: 10.1016/j.physd.2003.03.001.
  • N. Aubry, P. Holmes, J. Lumley, and E. Stone, The dynamics of coherent structures in the wall region of a turbulent boundary layer, J. Fluid Mech., vol. 192, pp. 115–173, 1988. DOI: 10.1017/S0022112088001818.
  • N. Aubry, R. Guyonnet, and R. Lima, Spatiotemporal analysis of complex signals: Theory and applications, J. Stat. Phys., vol. 64, pp. 683–739, 1991. DOI: 10.1007/BF01048312.
  • M. Mendez, M. Balabane, and J.-M. Buchlin, Multi-scale proper orthogonal decomposition of complex fluid flows, J. Fluid Mech., vol. 870, pp. 988–1036, 2019. DOI: 10.1017/jfm.2019.212.
  • T. Chen and H. Chen, Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function neural networks, IEEE Trans. Neural Netw., vol. 6, pp. 904–910, 1995.
  • C. Tianping and C. Hong, Approximations of continuous functions by neural networks with application to dynamic system, IEEE Trans. Neural Networks, vol. 4, pp. 910–918, 1993.
  • S. Chen and S. A. Billings, Neural networks for nonlinear dynamic system modelling and identification, Int. J. Control, vol. 56, pp. 319–346, 1992. DOI: 10.1080/00207179208934317.
  • O. San, R. Maulik, and M. Ahmed, An artificial neural network framework for reduced order modeling of transient flows, Commun. Nonlinear Sci. Numer. Simul., vol. 77, pp. 271–287, 2019. DOI: 10.1016/j.cnsns.2019.04.025.
  • R. Maulik, A. Mohan, B. Lusch, S. Madireddy, P. Balaprakash, and D. Livescu, Time-series learning of latent-space dynamics for reduced-order model closure, Physica D, vol. 405, pp. 132368, 2020. DOI: 10.1016/j.physd.2020.132368.
  • S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control, Cambridge University Press, Cambridge, 2019.
  • B. M. de Silva, K. Champion, M. Quade, J.-C. Loiseau, J. N. Kutz, and S. L. Brunton, PySINDy: A Python package for the sparse identification of nonlinear dynamics from data, arXiv Preprint arXiv:2004.08424, 2020.
  • J. N. Kani and A. H. Elsheikh, DR-RNN: A deep residual recurrent neural network for model reduction, arXiv Preprint arXiv:1709.00939, 2017.
  • D. Mandic and J. Chambers, Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability, Wiley, New York, 2001.
  • L. Medsker and L. C. Jain, Recurrent Neural Networks: Design and Applications, CRC Press, Boca Raton, FL, 1999.
  • P. A. Srinivasan, L. Guastoni, H. Azizpour, P. Schlatter, and R. Vinuesa, Predictions of turbulent shear flows using deep neural networks, Phys. Rev. Fluids, vol. 4, pp. 054603, 2019. DOI: 10.1103/PhysRevFluids.4.054603.
  • K. Hasegawa, K. Fukami, T. Murata, and K. Fukagata, Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes, Theor. Comput. Fluid Dyn, vol. 34, pp. 367–383, 2020. DOI: 10.1007/s00162-020-00528-w.
  • T. Nakamura, K. Fukami, K. Hasegawa, Y. Nabae, and K. Fukagata, Convolutional neural network and long short-term memory based reduced order surrogate for minimal turbulent channel flow, Phys. Fluids, vol. 33, pp. 025116, 2021. DOI: 10.1063/5.0039845.
  • A. Koeppe, F. Bamer, and B. Markert, An efficient Monte Carlo strategy for elasto-plastic structures based on recurrent neural networks, Acta Mech., vol. 230, pp. 3279–3293, 2019. DOI: 10.1007/s00707-019-02436-5.
  • Sunyoung Im, Jonggeon Lee, and Maenghyo Cho, Surrogate modeling of elasto-plastic problems via long short-term memory neural networks and proper orthogonal decomposition, Comput. Methods Appl. Mechan. Eng., 2021. DOI: 10.1016/j.cma.2021.114030.
  • Sy-Ngoc Nguyen, Chien Truong-Quoc, Jang-woo Han, Sunyoung Im, and Maenghyo Cho, Neural network-based prediction of long-term time-dependent mechanical behavior of laminated composite plates with arbitrary hygrothermal effects, J. Mech. Sci. Technol., 2021. DOI: 10.1007/s12206-021-0932-2.
  • R. Zhang, Z. Chen, S. Chen, J. Zheng, O. Büyüköztürk, and H. Sun, Deep long short-term memory networks for nonlinear structural seismic response prediction, Comput. Struct., vol. 220, pp. 55–68, 2019. DOI: 10.1016/j.compstruc.2019.05.006.
  • G. Runge, M. Wiese, and A. Raatz, FEM-based training of artificial neural networks for modular soft robots, 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE, 2017. DOI: 10.1109/ROBIO.2017.8324448.
  • W. R. Hamilton, Second essay on a general method in dynamics, Philos. Trans. Roy. Soc. Lond., vol. 125, pp. 95–144, 1835.
  • X. V. W.R. Hamilton, On a general method in dynamics; by which the study of the motions of all free systems of attracting or repelling points is reduced to the search and differentiation of one central relation, or characteristic function, Philos. Trans. Roy. Soc. Lond., pp. 247–308, 1834.
  • J. Liu, C. C. Foo, and Z.-Q. Zhang, A 3D multi-field element for simulating the electromechanical coupling behavior of dielectric elastomers, Acta Mech. Solida Sin., vol. 30, pp. 374–389, 2017. DOI: 10.1016/j.camss.2017.07.005.
  • C. Lanczos, The Variational Principles of Mechanics, University of Toronto Press, Toronto, 2020.
  • V. Arnold and R. Broucke, Book-Review-Mathematical methods of classical mechanics, Celestial Mech., vol. 28, pp. 345, 1982. DOI: 10.1007/BF01243742.
  • C. Kadapa, W. G. Dettmer, and D. Perić, On the advantages of using the first-order generalised-alpha scheme for structural dynamic problems, Comput. Struct., vol. 193, pp. 226–238, 2017. DOI: 10.1016/j.compstruc.2017.08.013.
  • X. Zhao, W. Hong, and Z. Suo, Electromechanical hysteresis and coexistent states in dielectric elastomers, Phys. Rev. B, vol. 76, pp. 134113, 2007. DOI: 10.1103/PhysRevB.76.134113.
  • A. N. Gent, A new constitutive relation for rubber, Rubber Chem. Technol., vol. 69, pp. 59–61, 1996. DOI: 10.5254/1.3538357.
  • R. W. Ogden, Non-Linear Elastic Deformations, Courier Corporation, New York, 1997.
  • A. T. Mohan and D. V. Gaitonde, A Deep Learning based Approach to Reduced Order Modeling for Turbulent Flow Control using LSTM Neural Networks, 2018.
  • S. Pawar, S. Rahman, H. Vaddireddy, O. San, A. Rasheed, and P. Vedula, A deep learning enabler for nonintrusive reduced order modeling of fluid flows, Phys. Fluids, vol. 31, pp. 085101, 2019. DOI: 10.1063/1.5113494.
  • P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge, 2012.
  • L. Sirovich, Turbulence and the dynamics of coherent structures. I. Coherent structures, Q. Appl. Math., vol. 45, pp. 561–571, 1987. DOI: 10.1090/qam/910462.
  • M. Rathinam and L. R. Petzold, A new look at proper orthogonal decomposition, SIAM J. Numer. Anal., vol. 41, pp. 1893–1925, 2003. DOI: 10.1137/S0036142901389049.
  • A. Chatterjee, An introduction to the proper orthogonal decomposition, Curr. Sci., vol. 78, pp. 808–817, 2000.
  • G. Berkooz, P. Holmes, and J. L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., vol. 25, pp. 539–575, 1993. DOI: 10.1146/annurev.fl.25.010193.002543.
  • L. N. Trefethen and D. Bau, III, Numerical Linear Algebra, SIAM, Philadelphia, 1997.
  • M. Raissi, P. Perdikaris, and G. E. Karniadakis, Multistep neural networks for data-driven discovery of nonlinear dynamical systems, arXiv Preprint arXiv:1801.01236, 2018.
  • E. Haber and L. Ruthotto, Stable architectures for deep neural networks, Inverse Prob., vol. 34, pp. 014004, 2018. DOI: 10.1088/1361-6420/aa9a90.
  • R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, Neural ordinary differential equations, In: Advances in Neural Information Processing Systems, arXiv Preprint arXiv:1806.07366, pp. 6571–6583, 2018.
  • S. E. Ahmed, O. San, A. Rasheed, and T. Iliescu, A long short-term memory embedding for hybrid uplifted reduced order models, Physica D, pp. 132471, 2020. DOI: 10.1016/j.physd.2020.132471.
  • D. Xiao, F. Fang, J. Zheng, C. C. Pain, and I. M. Navon, Machine learning-based rapid response tools for regional air pollution modelling, Atmos. Environ., vol. 199, pp. 463–473, 2019. DOI: 10.1016/j.atmosenv.2018.11.051.
  • J. Schmidhuber and S. Hochreiter, Long short-term memory, Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997. DOI: 10.1162/neco.1997.9.8.1735.
  • M. Hermans and B. Schrauwen, Training and analysing deep recurrent neural networks, Adv. Neur. Inform. Process. Syst., vol. 26, pp. 190–198, 2013.
  • R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, How to construct deep recurrent neural networks, arXiv Preprint arXiv:1312.6026, 2013.
  • M. Schuster, and K. K. Paliwal, Bidirectional recurrent neural networks, IEEE Trans. Signal Process., vol. 45, pp. 2673–2681, 1997. DOI: 10.1109/78.650093.
  • Y. Gal and Z. Ghahramani, A theoretically grounded application of dropout in recurrent neural networks, Adv. Neural Inform. Process. Syst., vol. 29, pp. 1019–1027, 2016.
  • N. Ketkar, Introduction to Keras, Deep Learning with Python, Springer, Berlin, pp. 97–111, 2017.
  • F. Regazzoni, L. Dedè, and A. Quarteroni, Machine learning for fast and reliable solution of time-dependent differential equations, Comput. Phys., vol. 397, pp. 108852, 2019. DOI: 10.1016/j.jcp.2019.07.050.
  • A. Graves, N. Jaitly, and A.-R. Mohamed, Hybrid speech recognition with deep bidirectional LSTM, 2013 IEEE workshop on automatic speech recognition and understanding, IEEE, 2013. pp. 273–278.
  • A. Graves and J. Schmidhuber, Framewise phoneme classification with bidirectional LSTM and other neural network architectures, Neural Netw., vol. 18, no. 5–6, pp. 602–610, 2005. DOI: 10.1016/j.neunet.2005.06.042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.