196
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Modeling stress–strain response of shape memory alloys during reorientation of self-accommodated martensites with different morphologies

ORCID Icon & ORCID Icon
Pages 6948-6956 | Received 26 Jul 2021, Accepted 01 Oct 2021, Published online: 25 Oct 2021

References

  • K. Bhattacharya, Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect, New York, Oxford University Press, 2003.
  • K. Bhattacharya, Self-accommodation in martensite, Arch. Rational Mech. Anal., vol. 120, no. 3, pp. 201–244, 1992. DOI: 10.1007/BF00375026.
  • F. E. Hildebrand and R. Abeyaratne, An atomistic investigation of the kinetics of detwinning, J. Mech. Phys. Solids, vol. 56, no. 4, pp. 1296–1319, 2008. DOI: 10.1016/j.jmps.2007.09.006.
  • S. Dilibal, Investigation of nucleation and growth of detwinning mechanism in martensitic single crystal NiTi using digital image correlation, Metallogr. Microstruct. Anal., vol. 2, no. 4, pp. 242–248, 2013. DOI: 10.1007/s13632-013-0083-7.
  • L. Hou et al., Detwinning of hierarchically structured martensitic variants in a directionally solidified non-modulated Ni–Mn–Ga alloy under uniaxial loading, Scr. Mater., vol. 134, pp. 85–90, 2017. DOI: 10.1016/j.scriptamat.2017.02.045.
  • N. Zárubová, Y. Ge, O. Heczko, and S. P. Hannula, In situ TEM study of deformation twinning in Ni–Mn–Ga non-modulated martensite, Acta Mater., vol. 61, no. 14, pp. 5290–5299, 2013. DOI: 10.1016/j.actamat.2013.05.020.
  • R. F. Hamilton, B. A. Bimber, M. Taheri Andani, and M. Elahinia, Multi-scale shape memory effect recovery in NiTi alloys additive manufactured by selective laser melting and laser directed energy deposition, J. Mater. Process. Technol., vol. 250, pp. 55–64, 2017. DOI: 10.1016/j.jmatprotec.2017.06.027.
  • Y. Liu, Z. Xie, J. Van Humbeeck, and L. Delaey, Effect of texture orientation on the martensite deformation of NiTi shape memory alloy sheet, Acta Mater., vol. 47, no. 2, pp. 645–660, 1999. DOI: 10.1016/S1359-6454(98)00376-0.
  • Y. Liu, Z. Xie, J. V. Humbeeck, L. Delaey, and Y. Liu, On the deformation of the twinned domain in Niti shape memory alloys, Philos. Mag. A, vol. 80, no. 8, pp. 1935–1953, 2000. DOI: 10.1080/01418610008219095.
  • Y. Liu, Z. Xie, J. V. Humbeeck, and L. Delaey, Deformation of shape memory alloys associated with twinned domain re-configurations, Mater. Sci. Eng. A, vol. 273–275, pp. 679–684, 1999. DOI: 10.1016/S0921-5093(99)00348-2.
  • Z. Xie, Y. Liu, and J. Van Humbeeck, Microstructure of NiTi shape memory alloy due to tension–compression cyclic deformation, Acta Mater., vol. 46, no. 6, pp. 1989–2000, 1998. DOI: 10.1016/S1359-6454(97)00379-0.
  • G. Laplanche, T. Birk, S. Schneider, J. Frenzel, and G. Eggeler, Effect of temperature and texture on the reorientation of martensite variants in NiTi shape memory alloys, Acta Mater., vol. 127, pp. 143–152, 2017. DOI: 10.1016/j.actamat.2017.01.023.
  • J. Ma, I. Karaman, and R. D. Noebe, High temperature shape memory alloys, Int. Mater. Rev., vol. 55, no. 5, pp. 257–315, 2010. DOI: 10.1179/095066010X12646898728363.
  • L. Straka, H. Hänninen, and O. Heczko, Temperature dependence of single twin boundary motion in Ni–Mn–Ga martensite, Appl. Phys. Lett., vol. 98, no. 14, pp. 141902, 2011. DOI: 10.1063/1.3573860.
  • I. Aaltio, O. Söderberg, Y. Ge, and S. P. Hannula, Twin boundary nucleation and motion in Ni–Mn–Ga magnetic shape memory material with a low twinning stress, Scr. Mater., vol. 62, no. 1, pp. 9–12, 2010. DOI: 10.1016/j.scriptamat.2009.09.012.
  • P. Müllner and A. King, Deformation of hierarchically twinned martensite, Acta Mater., vol. 58, no. 16, pp. 5242–5261, 2010. DOI: 10.1016/j.actamat.2010.05.048.
  • R. Abeyaratne and S. Vedantam, A lattice-based model of the kinetics of twin boundary motion, J. Mech. Phys. Solids, vol. 51, no. 9, pp. 1675–1700, 2003. DOI: 10.1016/S0022-5096(03)00069-3.
  • T. Ezaz and H. Sehitoglu, Type II detwinning in NiTi, Appl. Phys. Lett., vol. 98, no. 14, pp. 141906, 2011. DOI: 10.1063/1.3574775.
  • T. Ezaz, M. D. Sangid, and H. Sehitoglu, Energy barriers associated with slip–twin interactions, Philos. Mag., vol. 91, no. 10, pp. 1464–1488, 2011. DOI: 10.1080/14786435.2010.541166.
  • P. Thamburaja, Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys, J. Mech. Phys. Solids, vol. 53, no. 4, pp. 825–856, 2005. DOI: 10.1016/j.jmps.2004.11.004.
  • J. Boyd and D. Lagoudas, A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy, Int. J. Plast., vol. 12, no. 6, pp. 805–842, 1996. DOI: 10.1016/S0749-6419(96)00030-7.
  • R. Abeyaratne, C. Chu, and R. D. James, Kinetics of materials with wiggly energies: Theory and application to the evolution of twinning microstructures in a Cu–Al–Ni shape memory alloy, Philos. Mag. A, vol. 73, no. 2, pp. 457–497, 1996. DOI: 10.1080/01418619608244394.
  • R. Abeyaratne and J. K. Knowles, A continuum model of a thermoelastic solid capable of undergoing phase transitions, J. Mech. Phys. Solids, vol. 41, no. 3, pp. 541–571, 1993. DOI: 10.1016/0022-5096(93)90048-K.
  • S. Vedantam, Constitutive equations for rate-dependent pseudoelastic behaviour of shape memory alloys, Smart Mater. Struct., vol. 15, no. 5, pp. 1172–1178, 2006. DOI: 10.1088/0964-1726/15/5/003.
  • R. Ahluwalia, S. S. Quek, and D. T. Wu, Simulation of grain size effects in nanocrystalline shape memory alloys, J. Appl. Phys ., vol. 117, no. 24, pp. 244305, 2015. DOI: 10.1063/1.4923044.
  • Y. Zhong and T. Zhu, Phase-field modeling of martensitic microstructure in NiTi shape memory alloys, Acta Mater., vol. 75, pp. 337–347, 2014. DOI: 10.1016/j.actamat.2014.04.013.
  • Y. G. Cui, J. F. Wan, J. H. Zhang, and Y. H. Rong, Kinetics, mechanism, and pathway of reorientation of multi-variants in Ni–Mn–Ga shape memory alloys under continuous compressive stress: phase-field simulation, J. Appl. Phys., vol. 112, no. 9, pp. 094908, 2012. DOI: 10.1063/1.4765011.
  • J. Hirth, Ledges and dislocations in phase transformations, MMTA, vol. 25, no. 9, pp. 1885–1894, 1994. DOI: 10.1007/BF02649036.
  • D. W. Bray and J. M. Howe, High-resolution transmission electron microscopy investigation of the face-centered cubic/hexagonal close-packed martensite transformation in Co–31.8 wt pct Ni alloy: Part 1. Plate interfaces and growth ledges, MMTA, vol. 27, no. 11, pp. 3362–3370, 1996. DOI: 10.1007/BF02595429.
  • K. Ogawa and S. Kajiwara, High-resolution electron microscopy study of ledge structures and transition lattices at the austenite–martensite interface in Fe-based alloys, Philos. Mag, vol. 84, no. 27, pp. 2919–2947, 2004. DOI: 10.1080/14786430410001701751.
  • M. Uchimali, B. C. Rao, and S. Vedantam, Constitutively informed multi-body interactions for lattice particle models, Comput. Methods Appl. Mech. Eng., vol. 366, pp. 113052, 2020. DOI: 10.1016/j.cma.2020.113052.
  • M. Uchimali, B. C. Rao, and S. Vedantam, Modeling size and orientation effects on the morphology of microstructure formed in martensitic phase transformations using a novel discrete particle model, Acta Mater., vol. 205, pp. 116528, 2021. DOI: 10.1016/j.actamat.2020.116528.
  • M. Uchimali, Effect of stress on the thermal hysteresis of martensitic transformations – a continuum based particle dynamics model, Mech. Adv. Mater. Struct., pp. 1–13, 2021. DOI: 10.1080/15376494.2021.1909787.
  • V. Ananchaperumal and S. Vedantam, Formation and evolution of microstructure in shape memory alloy wire reinforced composites, Trans. Indian Inst. Met., pp. 1–12, 2021. DOI: 10.1007/s12666-021-02283-w.
  • A. Askar, Lattice Dynamical Foundations of Continuum Theories, World Scientific, Singapore, 1986. Available from https://www.worldscientific.com/doi/abs/101142/0192.
  • L. Truskinovsky and A. Vainchtein, Kinetics of martensitic phase transitions: lattice model, SIAM J. Appl. Math., vol. 66, no. 2, pp. 533–553, 2005. DOI: 10.1137/040616942.
  • J. Ericksen, On the Cauchy—Born rule, Math. Mech. Solids, vol. 13, no. 3–4, pp. 199–220, 2008. DOI: 10.1177/1081286507086898.
  • S. Vedantam and R. Abeyaratne, A Helmholtz free-energy function for a Cu–Al–Ni shape memory alloy, Int. J. Non. Linear Mech., vol. 40, no. 2–3, pp. 177–193, 2005. DOI: 10.1016/j.ijnonlinmec.2004.05.005.
  • E. Faran, H. Seiner, M. Landa, and D. Shilo, The effects of microstructure on crackling noise during martensitic transformation in Cu–Al–Ni, Appl. Phys. Lett., vol. 107, no. 17, pp. 171601, 2015. DOI: 10.1063/1.4934694.
  • N. Zreihan, E. Faran, E. Vives, A. Planes, and D. Shilo, Relations between stress drops and acoustic emission measured during mechanical loading, Phys. Rev. Mater., vol. 3, no. 4, 2019. DOI: 10.1103/PhysRevMaterials.3.043603.
  • N. Zreihan, A. Krimer, D. Avisar, E. Pagounis, D. Shilo, and E. Faran, Microstructure evolution and kinetic laws for the motion of multiple twin boundaries in Ni–Mn–Ga, Funct. Mater. Lett., vol. 12, no. 01, pp. 1850102–1850104, 2019. DOI: 10.1142/S1793604718501023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.