543
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Research on anti-penetration performance of composite armor of steel/composite materials

ORCID Icon, , , , &
Pages 7035-7050 | Received 22 Jun 2021, Accepted 05 Oct 2021, Published online: 22 Oct 2021

References

  • A.A. Almohandes, M.S. Abdel-Kader, and A.M. Eleiche, Experimental investigation of the ballistic resistance of steel-fiberglass reinforced polyester laminated plates, Compos. B Eng., vol. 27, no. 5, pp. 447–458, 1996. DOI: 10.1016/1359-8368(96)00011-X.
  • N.K. Gupta and V. Madhu, An experimental study of normal and oblique impact of hard-core projectile on single and layered plates, Int. J. Impact Eng., vol. 19, no. 5–6, pp. 395–414, 1997. DOI: 10.1016/S0734-743X(97)00001-8.
  • J.A. Zukas and D.R. Scheffler, Impact effects in multilayered plates, Int. J. Solids Struct., vol. 38, no. 19, pp. 3321–3328, 2001. DOI: 10.1016/S0020-7683(00)00260-2.
  • S. Dey, T. Børvik, O.S. Hopperstad, J.R. Leinum, and M. Langseth, The effect of target strength on the perforation of steel plates using three different projectile nose shapes, Int. J. Impact Eng., vol. 30, no. 8–9, pp. 1005–1038, 2004. DOI: 10.1016/j.ijimpeng.2004.06.004.
  • H.M. Wen, Predicting the penetration and perforation of targets struck by projectiles at normal incidence, Mech. Struct. Mach., vol. 30, no. 4, pp. 543–577, 2002. DOI: 10.1081/SME-120015076.
  • X. Teng, T. Wierzbicki, and M. Huang, Ballistic resistance of double-layered armor plates, Int. J. Impact Eng., vol. 35, no. 8, pp. 870–884, 2008. DOI: 10.1016/j.ijimpeng.2008.01.008.
  • W. Riedel, H. Nahme, D.M. White, and R.A. Clegg, Hypervelocity impact damage prediction in composites: Part II-experimental investigations and simulations, Int. J. Impact Eng., vol. 33, no. 1–12, pp. 670–680, 2006. DOI: 10.1016/j.ijimpeng.2006.09.052.
  • H.L. Gower, D.S. Cronin, and A. Plumtree, Ballistic impact response of laminated composite panels, Int. J. Impact Eng., vol. 35, no. 9, pp. 1000–1008, 2008. DOI: 10.1016/j.ijimpeng.2007.07.007.
  • V.B.C. Tan and K.J.L. Khoo, Perforation of flexible laminates by projectiles of different geometry, Int. J. Impact Eng., vol. 31, no. 7, pp. 793–810, 2005. DOI: 10.1016/j.ijimpeng.2004.04.003.
  • M. Grujicic, et al., Ballistic material model for cross-plied unidirectional ultra-high molecular-weight polyethylene fiber-reinforced armor-grade composites, Mater. Sci. Eng. A, vol. 498, no. 1–2, pp. 231–241, 2008. DOI: 10.1016/j.msea.2008.07.056.
  • A.K. Bandaru, L. Vetiyatil, and S. Ahmad, The effect of hybridization on the ballistic impact behavior of hybrid composite armors, Compos. B Eng., vol. 76, pp. 300–319, 2015. DOI: 10.1016/j.compositesb.2015.03.012.
  • L.M. Bresciani, A. Manes, A. Ruggiero, G. Iannitti, and M. Giglio, Experimental tests and numerical modelling of ballistic impacts against Kevlar 29 plain-woven fabrics with an epoxy matrix: Macro-homogeneous and Meso-heterogeneous approaches, Compos. B Eng., vol. 88, pp. 114–130, 2016. DOI: 10.1016/j.compositesb.2015.10.039.
  • S.G. Nunes, R. Scazzosi, A. Manes, S.C. Amico, W.F. de Amorim Jr., and M. Giglio, Influence of projectile and thickness on the ballistic behavior of aramid composites: Experimental and numerical study, Int. J. Impact Eng., vol. 132, p. 103307, 2019. DOI: 10.1016/j.ijimpeng.2019.05.021.
  • C. Zhao, X. Gong, S. Wang, W. Jiang, and S. Xuan, Shear stiffening gels for intelligent anti-impact applications, Cell Rep. Phys. Sci., vol. 1, no. 12, p. 100266, 2020. DOI: 10.1016/j.xcrp.2020.100266.
  • J. Qin, B. Guo, L. Zhang, T. Wang, G. Zhang, and X. Shi, Soft armor materials constructed with Kevlar fabric and a novel shear thickening fluid, Compos. B Eng., vol. 183, p. 107686, 2020. DOI: 10.1016/j.compositesb.2019.107686.
  • Z. Mohammad, P.K. Gupta, and A. Baqi, Experimental and numerical investigations on the behavior of thin metallic plate targets subjected to ballistic impact, Int. J. Impact Eng., vol. 146, p. 103717, 2020. DOI: 10.1016/j.ijimpeng.2020.103717.
  • X. Zhao, S. Wang, F. Tian, Y. Xu, and S. Li, The energy absorption mechanism and analysis method of steel/fiber composite plate against fragment impact at projectile velocity, Acta Armamentarii, vol. 35, no. S2, pp. 309–315, 2014.
  • P.K. Jena, K. Ramanjeneyulu, K. Sivakumar, and T.B. Bhat, Ballistic studies on layered structures, Mater. Des., vol. 30, no. 6, pp. 1922–1929, 2009. DOI: 10.1016/j.matdes.2008.09.008.
  • D. Sherman, Impact failure mechanisms in alumina tiles on finite thickness support and the effect of confinement, Int. J. Impact Eng., vol. 24, no. 3, pp. 313–328, 2000. DOI: 10.1016/S0734-743X(99)00147-5.
  • E. Palta, M. Gutowski, and H. Fang, A numerical study of steel and hybrid armor plates under ballistic impacts, Int. J. Solids Struct., vol. 136–137, pp. 279–294, 2018. DOI: 10.1016/j.ijsolstr.2017.12.021.
  • Z. Mei, D. Tan, X. Zhu, and H. Hou, Experimental study on the structure optimization of anti-ballistic composite laminates, Ordnance Mater. Sci. Eng., vol. 28, no. 4, pp. 38–41, 2005.
  • X. Zhu, Z. Zhang, R. Liu, and J. Wang, Experimental investigation of mingled-fiber composites impacted by bullets, Ordnance Mater. Sci. Eng., vol. 23, no. 1, pp. 37, 17, 2000.
  • A.P. Sharma, R. Velmurugan, K. Shankar, and S.K. Ha, High-velocity impact response of titanium-based fiber metal laminates. Part I: Experimental investigations, Int. J. Impact Eng., vol. 152, p. 103845, 2021. DOI: 10.1016/j.ijimpeng.2021.103845.
  • Y. Chen, L. Chen, Q. Huang, and Z. Zhang, Effect of metal type on the energy absorption of fiber metal laminates under low-velocity impact, Mech. Adv. Mater. Struct., pp. 1–17, 2021. DOI: 10.1080/15376494.2021.1933659.
  • W. He, et al., On impact behavior of fiber metal laminate (FML) structures: A state-of-the-art review, Thin-Walled Struct., vol. 167, p. 108026, 2021. DOI: 10.1016/j.tws.2021.108026.
  • L. Yang, Z. Chen, Y. Dong, F. Zi, J. Yang, and L. Wu, Ballistic performance of composite armor with dual layer piecewise ceramic tiles under sequential impact of two projectiles, Mech. Adv. Mater. Struct., pp. 1–14, 2020. DOI: 10.1080/15376494.2020.1749737.
  • G.R. Cowper and P.S. Symonds, Strain Hardening and Strain-Rate Effects in the Impact Loading of Cantilever Beams, Office of Naval Research, Division of Applied Mathematics, Brown University, Providence, 1957.
  • Z. Fang, H. Hou, Y. Li, M. Li, and N. Hu. Simulation of the fiber reinforced composite sandwich structure subject to high velocity fragment impact, Ship Ocean Eng., vol. 47, no. 4, pp. 21–25, 2018.
  • G. Johnson and W.H. Cook, A constitutive model and data for metals subjected to large strains. high strain rates and high temperatures, 7th International Symposium on Ballistics, 1983.
  • G.R. Johnson and W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech., vol. 21, no. 1, pp. 31–48, 1985. DOI: 10.1016/0013-7944(85)90052-9.
  • F.K. Chang and K.Y. Chang, A progressive damage model for laminated composites containing stress concentrations, J. Compos. Mater., vol. 21, no. 9, pp. 834–855, 1987a. DOI: 10.1177/002199838702100904.
  • F.K. Chang and K.Y. Chang, Post failure analysis of bolted composite joints in tension or shear out mode failure, J. Compos. Mater., vol. 21, no. 9, pp. 809–855, 1987b. DOI: 10.1177/002199838702100903.
  • T. Børvik, M. Langseth, O.S. Hopperstad, and K.A. Malo, Ballistic penetration of steel plates, Int. J. Impact Eng., vol. 22, no. 9–10, pp. 855–886, 1999. DOI: 10.1016/S0734-743X(99)00011-1.
  • D. Zhang, Y. Sun, L. Chen, S. Zhang, and N. Pan, Influence of fabric structure and thickness on the ballistic impact behavior of ultrahigh molecular weight polyethylene composite laminate, Mater. Des., vol. 54, pp. 315–322, 2014. DOI: 10.1016/j.matdes.2013.08.074.
  • A.A. Ramadhan, A.R. Abu Talib, A.S. Mohd Rafie, and R. Zahari, High velocity impact response of Kevlar-29/epoxy and 6061-T6 aluminum laminated panels, Mater. Des., vol. 43, pp. 307–321, 2013. DOI: 10.1016/j.matdes.2012.06.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.