208
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Buckling analysis of sandwich plates with functionally graded graphene reinforced composite face sheets based on a five-unknown plate theory

&
Pages 7431-7440 | Received 06 Aug 2021, Accepted 26 Oct 2021, Published online: 22 Nov 2021

References

  • A. D. Moghadam, E. Omrani, P. L. Menezes, and P. K. Rohatgi, Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene-A review, Compos. Part B: Eng., vol. 77, pp. 402–420, 2015. DOI: 10.1016/j.compositesb.2015.03.014.
  • S. J. Heerema, and C. Dekker, Graphene nanodevices for DNA sequencing, Nat. Nanotechnol., vol. 11, no. 2, pp. 127–136, 2016. DOI: 10.1038/nnano.2015.307.
  • H. Kwon, C. R. Bradbury, and M. Leparoux, Fabrication of functionally graded carbon nanotube-reinforced aluminum matrix composite, Adv. Eng. Mater., vol. 13, no. 4, pp. 325–329, 2011. DOI: 10.1002/adem.201000251.
  • H. L. Wu, J. Yang, and S. Kitipornchai, Dynamic instability of functionally graded multilayer graphene nano-composite beams in thermal environment, Compos Struct., vol. 162, pp. 244–254, 2017. DOI: 10.1016/j.compstruct.2016.12.001.
  • M. Mirzaei, and Y. Kiani, Thermal buckling of temperature dependent FG-CNT reinforced composite plates, Meccanica., vol. 51, no. 9, pp. 2185–2201, 2016. DOI: 10.1007/s11012-015-0348-0.
  • F. Bonaccorso, et al., 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science., vol. 347, no. 6217, pp. 1246501, 2015. DOI: 10.1126/science.1246501.
  • A. Tiwari, and M. Syväjärvi, Graphene Materials: Fundamentals and Emerging Applications, 1st ed. Wiley-Scrivener, Hoboken, 2015.
  • M. T. Song, J. Yang, and S. Kitipornchai, Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets, Compos B. Eng., vol. 134, pp. 106–113, 2018. DOI: 10.1016/j.compositesb.2017.09.043.
  • C. Feng, S. Kitipornchai, and J. Yang, Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs), Compos B. Eng., vol. 110, pp. 132–140, 2017. DOI: 10.1016/j.compositesb.2016.11.024.
  • M. T. Song, J. Yang, S. Kitipornchai, and W. D. Zhu, Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet- reinforced polymer composite plates, Int. J. Mech. Sci., vol. 131–132, pp. 345–355, 2017. DOI: 10.1016/j.ijmecsci.2017.07.017.
  • J. Yang, H. L. Wu, and S. Kitipornchai, Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams, Compos Struct., vol. 161, pp. 111–118, 2017. DOI: 10.1016/j.compstruct.2016.11.048.
  • C. Feng, S. Kitipornchai, and J. Yang, Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs), Eng Struct., vol. 140, pp. 110–119, 2017. DOI: 10.1016/j.engstruct.2017.02.052.
  • M. T. Song, X. Q. Li, S. Kitipornchai, Q. S. Bi, and J. Yang, Low-velocity impact response of geometrically nonlinear functionally graded graphene platelet-reinforced nanocomposite plates, Nonlinear Dyn., vol. 95, no. 3, pp. 2333–2352, 2019. DOI: 10.1007/s11071-018-4695-y.
  • H. L. Wu, J. Yang, and S. Kitipornchai, Parametric instability of thermo-mechanically loaded functionally graded graphene reinforced nanocomposite plates, Int. J. Mech. Sci., vol. 135, pp. 431–440, 2018. DOI: 10.1016/j.ijmecsci.2017.11.039.
  • Y. Kiani, and M. Mirzaei, Enhancement of non-linear thermal stability of temperature dependent laminated beams with graphene reinforcements, Compos. Struct., vol. 186, pp. 114–122, 2018. DOI: 10.1016/j.compstruct.2017.11.086.
  • M. Mirzaei, and Y. Kiani, Isogeometric thermal buckling analysis of temperature dependent FG graphene reinforced laminated plates using NURBS formulation, Compos. Struct., vol. 180, pp. 606–616, 2017. DOI: 10.1016/j.compstruct.2017.08.057.
  • Y. Kiani, Buckling of functionally graded graphene reinforced conical shells under external pressure in thermal environment, Compos. Part B., vol. 156, pp. 128–137, 2019. DOI: 10.1016/j.compositesb.2018.08.052.
  • M. K. Zeverdejani, Y. T. Beni, and Y. Kiani, Multi-scale buckling and post-buckling analysis of functionally graded laminated composite plates reinforced by defective graphene sheets, Int. J. Str. Stab. Dyn., vol. 20, no. 1, pp. 2050001, 2020. DOI: 10.1142/S0219455420500017.
  • R. M. R. Reddy, W. Karunasena, and W. Lokuge, Free vibration of functionally graded-GPL reinforced composite plates with different boundary conditions, Aerosp. Sci. Technol., vol. 78, pp. 147–156, 2018. DOI: 10.1016/j.ast.2018.04.019.
  • J. J. Mao, and W. Zhang, Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces, Compos. Struct., vol. 216, pp. 392–405, 2019. DOI: 10.1016/j.compstruct.2019.02.095.
  • K. Gao, D. M. Do, R. L. Li, S. Kitipornchai, and J. Yang, Probabilistic stability analysis of functionally graded graphene reinforced porous beams, Aerosp. Sci. Technol., vol. 98, pp. 105738, 2020. DOI: 10.1016/j.ast.2020.105738.
  • J. N. Reddy, A simple higher-order theory for laminated composite plates, J. Appl. Mech., vol. 51, no. 4, pp. 745–752, 1984. DOI: 10.1115/1.3167719.
  • H. S. Shen, Y. Xiang, and F. Lin, Nonlinear bending of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations in thermal environments, Compos. Struct., vol. 170, pp. 80–90, 2017. DOI: 10.1016/j.compstruct.2017.03.001.
  • H. S. Shen, Y. Xiang, F. Lin, and D. Hui, Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments, Compos. B. Eng., vol. 119, pp. 67–78, 2017. DOI: 10.1016/j.compositesb.2017.03.020.
  • H. S. Shen, and Y. Xiang, Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical shells subjected to external pressure in thermal environments, Thin-Walled Struct., vol. 124, pp. 151–160, 2018. DOI: 10.1016/j.tws.2017.12.005.
  • H. S. Shen, Y. Xiang, and F. Lin, Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments, Comput. Method Appl. Mech. Eng., vol. 319, pp. 175–193, 2017. DOI: 10.1016/j.cma.2017.02.029.
  • H. S. Shen, Y. Xiang, F. Lin, and D. Hui, Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical panels resting on elastic foundations in thermal environments, Compos. B. Eng., vol. 136, pp. 177–186, 2018. DOI: 10.1016/j.compositesb.2017.10.032.
  • Y. Kiani, Isogeometric large amplitude free vibration of graphene reinforced laminated plates in thermal environment using NURBS formulation, Comput. Methods Appl. Mech. Eng., vol. 332, pp. 86–101, 2018. DOI: 10.1016/j.cma.2017.12.015.
  • Y. Kiani, NURBS-based isogeometric thermal postbuckling analysis of temperature dependent graphene reinforced composite laminated plates, Thin-Walled Struct., vol. 125, pp. 211–219, 2018. DOI: 10.1016/j.tws.2018.01.024.
  • A. Bakora, et al., Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method, Comput. Concrete., vol. 27, pp. 73–83, 2021.
  • T. H. L. Bekkaye, et al., Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory, Comput. Concrete., vol. 26, pp. 439–450, 2021.
  • C. H. Thai, A. J. M. Ferreira, T. D. Tran, and P. Phung-Van, Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation, Compos. Struct., vol. 220, pp. 749–759, 2019. DOI: 10.1016/j.compstruct.2019.03.100.
  • B. Anirudh, M. Ganapathi, C. Anant, and O. Polit, A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: Bending, vibration and buckling, Compos. Struct., vol. 222, pp. 110899, 2019. DOI: 10.1016/j.compstruct.2019.110899.
  • H. Yaghoobi, and F. Taheri, Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets, Compos. Struct., vol. 252, pp. 112700, 2020. DOI: 10.1016/j.compstruct.2020.112700.
  • E. Carrera, Theories and finite elements for multilayered, anisotropic, composite plates and shells, ARCO., vol. 9, no. 2, pp. 87–140, 2002. DOI: 10.1007/BF02736649.
  • E. Carrera, Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking, ARCO., vol. 10, no. 3, pp. 215–296, 2003. DOI: 10.1007/BF02736224.
  • A. M. A. Neves, et al., Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique, Compos. B: Eng., vol. 44, no. 1, pp. 657–674, 2013. DOI: 10.1016/j.compositesb.2012.01.089.
  • A. M. A. Neves, et al., Influence of zig-zag and warping effects on buckling of functionally graded sandwich plates according to sinusoidal shear deformation theories, Mech. Adv. Mater. Struct., vol. 24, no. 5, pp. 360–376, 2017. DOI: 10.1080/15376494.2016.1191095.
  • E. Carrera, and L. Demasi, Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 1: derivation of finite element matrices, Int. J. Numer. Meth. Engng., vol. 55, no. 2, pp. 191–231, 2002. DOI: 10.1002/nme.492.
  • E. Carrera, and L. Demasi, Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 2: Numerical implementations, Int. J. Numer. Meth. Engng., vol. 55, no. 3, pp. 253–291, 2002. DOI: 10.1002/nme.493.
  • E. Carrera, and A. Ciuffreda, A unified formulation to assess theories of multilayered plates for various bending problems, Compos. Struct., vol. 69, no. 3, pp. 271–293, 2005. DOI: 10.1016/j.compstruct.2004.07.003.
  • E. Carrera, Developments, ideas, and evaluations based upon Reissner’s Mixed Variational Theorem in the modeling of multilayered plates and shells, Appl. Mech. Rev., vol. 54, no. 4, pp. 301–329, 2001. DOI: 10.1115/1.1385512.
  • M. Touratier, An efficient standard plate theory, Int. J. Eng. Sci., vol. 29, no. 8, pp. 901–916, 1991. DOI: 10.1016/0020-7225(91)90165-Y.
  • M. Karama, K. S. Afaq, and S. Mistou, Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity, Int. J. Solids Struct., vol. 40, no. 6, pp. 1525–1546, 2003. DOI: 10.1016/S0020-7683(02)00647-9.
  • P. Shi, C. Y. Dong, F. Sun, W. Liu, and Q. Hu, A new higher order shear deformation theory for static, vibration and buckling responses of laminated plates with the isogeometric analysis, Compos. Struct., vol. 204, pp. 342–358, 2018. DOI: 10.1016/j.compstruct.2018.07.080.
  • R. Kumar, A. Lal, B. N. Singh, and J. Singh, New transverse shear deformation theory for bending analysis of FGM plate under patch load, Compos. Struct., vol. 208, pp. 91–100, 2019. DOI: 10.1016/j.compstruct.2018.10.014.
  • A. Shukla, P. C. Vishwakarma, J. Singh, and J. Singh, Vibration analysis of angle-ply laminated plates with RBF based meshless approach, Mater. Today: Proc., vol. 18, pp. 4605–4612, 2019.
  • J. B. Dafedar, and Y. M. Desai, Stability of composite and sandwich struts by mixed formulation, J. Eng. Mech., vol. 130, no. 7, pp. 762–770, 2004. DOI: 10.1061/(ASCE)0733-9399(2004)130:7(762).
  • M. D. Ottavio, and E. Carrera, Variable-kinematics approach for linearized buckling analysis of laminated plates and shells, AIAA J., vol. 48, no. 9, pp. 1987–1996, 2010. DOI: 10.2514/1.J050203.
  • A. K. Noor, J. M. Peters, and W. S. Burton, Three-dimensional solutions for initially stressed structural sandwiches, J. Eng. Mech., vol. 120, no. 2, pp. 284–303, 1994. DOI: 10.1061/(ASCE)0733-9399(1994)120:2(284).
  • F. Lin, Y. Xiang, and H. S. Shen, Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites-A molecular dynamics simulation, Compos. B. Eng., vol. 111, pp. 261–269, 2017. DOI: 10.1016/j.compositesb.2016.12.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.