367
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Uniaxial compression constitutive equations for saturated hydrogel combined water-expelled behavior with environmental factors and the size effect

, , ORCID Icon, ORCID Icon, ORCID Icon, , & show all
Pages 7491-7502 | Received 26 Aug 2021, Accepted 27 Oct 2021, Published online: 16 Dec 2021

References

  • Y. R. Zhang, K. J. Xu, Y. L. Bai, et al., Features of the volume change and a new constitutive equation of hydrogels under uniaxial compression, J. Mech. Behav. Biomed. Mater., vol. 85, pp. 181–187, 2018. DOI: 10.1016/j.jmbbm.2018.06.004.
  • Y. R. Zhang, L. Q. Tang, B. X. Xie, et al., A variable mass meso-model for the mechanical and water-expelled behaviors of PVA hydrogel in compression, Int. J. Appl. Mechanics., vol. 9, no. 3, pp. 1750044, 2017. DOI: 10.1142/S1758825117500442.
  • S. Vervoort, S. Patlazhan, J. Weyts, et al., Solvent release from highly swollen gels under compression, Polymer (Guildf)., vol. 46, no. 1, pp. 121–127, 2005. DOI: 10.1016/j.polymer.2004.10.046.
  • L. Brassart, Q. Liu, and Z. Suo, Mixing by shear, dilation, swap, and diffusion, J. Mech. Phys. Solids., vol. 112, pp. 253–272, 2018. DOI: 10.1016/j.jmps.2017.12.008.
  • R. Luo, H. Li, T. Y. Ng, et al., Computational analysis of influence of ionic strength on smart hydrogel subject to coupled pH-electric environmental stimuli, Mech. Adv. Mater. Struct., vol. 17, no. 7, pp. 573–583, 2010. DOI: 10.1080/15376490903556568.
  • K. Keller, T. Wallmersperger, B. Kröplin, et al., Modeling of temperature-sensitive polyelectrolyte gels by the use of the coupled chemo-electro-mechanical formulation, Mech. Adv. Mater. Struct., vol. 18, no. 7, pp. 511–523, 2011. DOI: 10.1080/15376494.2011.605006.
  • M. Doi, Gel dynamics, J. Phys. Soc. Japan., vol. 78, pp. 1–19, 2009.
  • A. Stracuzzi, M. B. Rubin, and A. Wahlsten, A thermomechanical theory for porous tissues with diffusion of fluid and micromechanical modeling of porosity, Mech. Res. Commun., vol. 97, pp. 112–122, 2019. DOI: 10.1016/j.mechrescom.2019.04.007.
  • W. Hong, X. Zhao, J. Zhou, et al., A theory of coupled diffusion and large deformation in polymeric gels, J. Mech. Phys. Solids., vol. 56, no. 5, pp. 1779–1793, 2008. DOI: 10.1016/j.jmps.2007.11.010.
  • S. A. Chester, and L. Anand, A coupled theory of fluid permeation and large deformations for elastomeric materials, J. Mech. Phys. Solids., vol. 58, no. 11, pp. 1879–1906, 2010. DOI: 10.1016/j.jmps.2010.07.020.
  • C. W. Macminn, E. R. Dufresne, and J. S. Wettlaufer, Large deformations of a soft porous material, Phys. Rev. Appl., vol. 5, pp. 044020, 2016.
  • S. Das, and D. Roy, A poroviscoelasticity model based on effective temperature for water and temperature driven phase transition in hydrogels, Int. J. Mech. Sci., vol. 196, pp. 106290, 2021.
  • S. A. Chester, A constitutive model for coupled fluid permeation and large viscoelastic deformation in polymeric gels, Soft Matter., vol. 8, no. 31, pp. 8223–8233, 2012. DOI: 10.1039/c2sm25372k.
  • N. Bosnjak, S. Nadimpalli, D. Okumura, et al., Experiments and modeling of the viscoelastic behavior of polymeric gels, J. Mech. Phys. Solids., vol. 137, pp. 103829, 2020.
  • D. R. Paul, and O. M. Ebra-Lima, Pressure‐induced diffusion of organic liquids through highly swollen polymer membranes, J. Appl. Polym. Sci., vol. 14, no. 9, pp. 2201–2224, 1970. DOI: 10.1002/app.1970.070140903.
  • Y. Liu, H. Zhang, and Y. Zheng, A multiplicative finite element algorithm for the inhomogeneous swelling of polymeric gels, Comput. Methods Appl. Mech. Eng., vol. 283, pp. 517–550, 2015. DOI: 10.1016/j.cma.2014.08.029.
  • S. Zheng, Z. Li, and Z. Liu, The fast homogeneous di ff usion of hydrogel under different stimuli, Int. J. Mech. Sci., vol. 137, pp. 263–270, 2018. DOI: 10.1016/j.ijmecsci.2018.01.029.
  • K. Urayama, and T. Takigawa, Volume of polymer gels coupled to deformation, Soft Matter., vol. 8, no. 31, pp. 8017–8029, 2012. DOI: 10.1039/c2sm25359c.
  • X. Zhao, X. Sun, J. Zhang, et al., Gel composition and brine concentration effect on hydrogel dehydration subjected to uniaxial compression, J. Pet Sci. Eng., vol. 182, pp. 106358, 2019. DOI: 10.1016/j.petrol.2019.106358.
  • K. Urayama, Y. Taoka, K. Nakamura, et al., Markedly compressible behaviors of gellan hydrogels in a constrained geometry at ultraslow strain rates, Polymer (Guildf)., vol. 49, no. 15, pp. 3295–3300, 2008. DOI: 10.1016/j.polymer.2008.05.045.
  • C. M. Buffinton, K. J. Tong, R. A. Blaho, et al., Comparison of mechanical testing methods for biomaterials: Pipette aspiration, nanoindentation, and macroscale testing, J. Mech. Behav. Biomed. Mater., vol. 51, pp. 367–379, 2015. DOI: 10.1016/j.jmbbm.2015.07.022.
  • R. H. Pritchard, and E. M. Terentjev, Swelling and de-swelling of gels under external elastic deformation, Polymer (Guildf)., vol. 54, no. 26, pp. 6954–6960, 2013. DOI: 10.1016/j.polymer.2013.11.006.
  • Y. Shi, D. Xiong, J. Li, et al., The water-locking and cross-linking effects of graphene oxide on the load-bearing capacity of poly(vinyl alcohol) hydrogel, RSC Adv., vol. 6, no. 86, pp. 82467–82477, 2016. DOI: 10.1039/C6RA21272G.
  • W. Zhao, Z. Shi, X. Chen, et al., Microstructural and mechanical characteristics of PHEMA-based nanofibre-reinforced hydrogel under compression, Compos. Part. B. Eng., vol. 76, pp. 292–299, 2015. DOI: 10.1016/j.compositesb.2015.02.033.
  • X. Gao, Z. Shi, C. Liu, et al., Inelastic behaviour of bacterial cellulose hydrogel: In aqua cyclic tests, Polym Test., vol. 44, pp. 82–92, 2015. DOI: 10.1016/j.polymertesting.2015.03.021.
  • X. Gao, P. Kuśmierczyk, Z. Shi, et al., Through-thickness stress relaxation in bacterial cellulose hydrogel, J. Mech. Behav. Biomed. Mater., vol. 59, pp. 90–98, 2016. DOI: 10.1016/j.jmbbm.2015.12.021.
  • C. He, H. Ji, Y. Qian, et al., Heparin-based and heparin-inspired hydrogels: size-effect, gelation and biomedical applications, J. Mater. Chem. B., vol. 7, no. 8, pp. 1186–1208, 2019. DOI: 10.1039/c8tb02671h.
  • S. P. Reese, B. J. Ellis, and J. A. Weiss, Micromechanical model of a surrogate for collagenous soft tissues: Development, validation and analysis of mesoscale size effects, Biomech. Model. Mechanobiol., vol. 12, no. 6, pp. 1195–1204, 2013. DOI: 10.1007/s10237-013-0475-2.
  • C. Y. Hui, Z. Liu, and S. L. Phoenix, Size effect on elastic stress concentrations in unidirectional fiber reinforced soft composites, Extrem. Mech. Lett., vol. 33, pp. 100573, 2019.
  • E. M. Odom, and D. F. Adams, Specimen size effect during tensile testing of an unreinforced polymer, J. Mater. Sci., vol. 27, no. 7, pp. 1767–1771, 1992. DOI: 10.1007/BF01107202.
  • A. S. Shahsavari, and R. C. Picu, Size effect on mechanical behavior of random fiber networks, Int. J. Solids Struct., vol. 50, no. 20–21, pp. 3332–3338, 2013. DOI: 10.1016/j.ijsolstr.2013.06.004.
  • R. Bai, Q. Yang, J. Tang, et al., Fatigue fracture of tough hydrogels, Extrem Mech Lett., vol. 15, pp. 91–96, 2017. DOI: 10.1016/j.eml.2017.07.002.
  • X. Liu, H. Nanao, T. Li, et al., A study on the friction properties of PAAc hydrogel under low loads in air and water, Wear., vol. 257, no. 7–8, pp. 665–670, 2004. DOI: 10.1016/j.wear.2004.02.005.
  • K. Volokh, Mechanics of soft materials. In: Mechanics of Soft Materials, Springer, Singapore, 2019.
  • P. A. Torzilli, D. A. Dethmers, D. E. Rose, and H. F. Schryuer, Movement of interstitial water through loaded articular cartilage, J. Biomech., vol. 16, no. 3, pp. 169–179, 1983. DOI: 10.1016/0021-9290(83)90124-0.
  • F. Casanova, P. R. Carney, and M. Sarntinoranont, Influence of needle insertion speed on backflow for convection-enhanced delivery, J. Biomech. Eng., vol. 134, pp. 1–8, 2012.
  • G. A. Orozco, G. Córdoba, F. Urrea, F. Casanova, J. H. Smith, and J. J. García, Finite element model to reproduce the effect of pre-stress and needle insertion velocity during infusions into brain phantom gel, Irbm., vol. 42, no. 3, pp. 180–188, 2021. DOI: 10.1016/j.irbm.2020.04.005.
  • Y. Jiang, Y. Li, and D. Xiao, Experimental and numerical study on implosion protection of large format photo-multiplier tubes, Int. J. Mech. Sci., vol. 163, pp. 105099, 2019.
  • L. Li, L. Ren, L. Wang, et al., Effect of water state and polymer chain motion on the mechanical properties of a bacterial cellulose and polyvinyl alcohol (BC/PVA) hydrogel, RSC Adv., vol. 5, no. 32, pp. 25525–25531, 2015. DOI: 10.1039/C4RA11594E.
  • T. A. Engstrom, K. Pogoda, K. Cruz, et al., Compression stiffening in biological tissues: On the possibility of classic elasticity origins, Phys. Rev. E., vol. 99, pp. 1–7, 2019.
  • A. Morch, L. Astruc, O. Mayeur, et al., Is there any objective and independent characterization and modeling of soft biological tissues?, J. Mech. Behav. Biomed. Mater., vol. 110, pp. 103915, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.