564
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Design and modeling of a novel multi-beam piezoelectric smart structure for vibration energy harvesting

, &
Pages 7519-7541 | Received 19 Jul 2021, Accepted 26 Oct 2021, Published online: 22 Nov 2021

References

  • J. L. Sullivan, and L. Gaines, A Review of Battery Life-Cycle Analysis: state of Knowledge and Critical Needs, Argonne National Lab, Argonne, 2010. DOI: 10.2172/1000659.
  • S. Rafique, Piezoelectric Vibration Energy Harvesting: Modeling & Experiments, Springer International Publishing, Berlin, 2018. DOI: 10.1007/978-3-319-69442-9.
  • Z. Yang, S. Zhou, J. Zu, and D. Inman, High-Performance Piezoelectric Energy Harvesters and Their Applications, Joule, vol. 2, no. 4, pp. 642–697, 2018. DOI: 10.1016/j.joule.2018.03.011.
  • S. Chalasani, and J. M. Conrad, A survey of energy harvesting sources for embedded systems, Conference Proceedings - IEEE SOUTHEASTCON, 2008. p. 442–7. DOI: 10.1109/SECON.2008.4494336.
  • G. De Pasquale, E. Brusa, and A. Soma, Capacitive vibration energy harvesting with resonance tuning. Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, 2009. p. 280–285.
  • S. Tornincasa, M. Repetto, E. Bonisoli, and F. di Monaco, Optimization of magneto-mechanical energy scavenger for automotive tire, J. Intell. Mater. Syst. Struct., vol. 23, no. 18, pp. 2055–2064, 2012. DOI: 10.1177/1045389X11430741.
  • E. Brusa, S. Carabelli, F. Carraro, and A. Tonoli, Electromechanical tuning of self-sensing piezoelectric transducers, J. Intell. Mater. Syst. Struct., vol. 9, no. 3, pp. 198–209, 1998. DOI: 10.1177/1045389X9800900306.
  • A. Sorrentino, Y. Ricci, D. Castagnetti, and L. Larcher, Design, prototyping and validation of a new PVDF acoustic sensor, Proceedings of 30th International Conference on Adaptive Structures and Technologies, ICAST 2019, International Conference on Adaptive Structures and Technologies;, 2019. p. 71–2.
  • S. R. Anton, and H. A. Sodano, A review of power harvesting using piezoelectric materials (2003–2006), Smart Mater. Struct., vol. 16, no. 3, pp. R1–R21, 2007. DOI: 10.1088/0964-1726/16/3/R01.
  • S. P. Beeby, M. J. Tudor, and N. M. White, Energy harvesting vibration sources for microsystems applications, Meas. Sci. Technol., vol. 17, no. 12, pp. R175–R195, 2006. DOI: 10.1088/0957-0233/17/12/R01.
  • S. Saadon, and O. Sidek, A review of vibration-based MEMS piezoelectric energy harvesters, Energy Convers. Manage., vol. 52, no. 1, pp. 500–504, 2011. DOI: 10.1016/j.enconman.2010.07.024.
  • C. Wei, and X. Jing, A comprehensive review on vibration energy harvesting: Modelling and realization, Renew. Sustain. Energy Rev., vol. 74, pp. 1–18, 2017. DOI: 10.1016/j.rser.2017.01.073.
  • F. Ali, W. Raza, X. Li, H. Gul, and K. H. Kim, Piezoelectric energy harvesters for biomedical applications, Nano Energy, vol. 57, pp. 879–902, 2019. DOI: 10.1016/j.nanoen.2019.01.012.
  • M. Safaei, H. A. Sodano, and S. R. Anton, A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later (2008–2018), Smart Mater. Struct., vol. 28, no. 11, pp. 113001, 2019. DOI: 10.1088/1361-665X/ab36e4.
  • Y. Liu, et al., Piezoelectric energy harvesting for self‐powered wearable upper limb applications, Nano Select., vol. 2, no. 8, pp. 1459–1479, 2021. DOI: 10.1002/nano.202000242.
  • C. B. Williams, and R. B. Yates, Analysis of a micro-electric generator for microsystems, Sensors Actuator. A: Phys., vol. 52, no. 1-3, pp. 8–11, 1996. DOI: 10.1016/0924-4247(96)80118-X.
  • E. Bonisoli, M. Repetto, N. Manca, and A. Gasparini, Electromechanical and electronic integrated harvester for shoes application, IEEE/ASME Trans. Mechatron., vol. 22, no. 5, pp. 1921–1932, 2017. DOI: 10.1109/TMECH.2017.2667401.
  • S. Tornincasa, M. Repetto, E. Bonisoli, and F. di Monaco, Energy harvester for vehicle tires: Nonlinear dynamics and experimental outcomes, J. Intell. Mater. Syst. Struct., vol. 23, no. 1, pp. 3–13, 2012. DOI: 10.1177/1045389X11430739.
  • P. S. Varoto, E. Bonisoli, and D. Lisitano, Parametric analysis and voltage generation performance of a multi-directional MDOF piezoelastic vibration energy harvester, Conference Proceedings of the Society for Experimental Mechanics Series, vol. 7, Springer, New York, 2021. p. 85–95. DOI: 10.1007/978-3-030-47713-4_10.
  • E. Brusa, Design of a kinematic vibration energy harvester for a smart bearing with piezoelectric/magnetic coupling, Mech. Adv. Mater. Struct., vol. 27, no. 15, pp. 1322–1330, 2020. DOI: 10.1080/15376494.2018.1508795.
  • M. H. Ansari, and M. A. Karami, A sub-cc nonlinear piezoelectric energy harvester for powering leadless pacemakers, J. Intell. Mater. Syst. Struct.., vol. 29, no. 3, pp. 438–445, 2018. DOI: 10.1177/1045389X17708344.
  • M. Scapolan, M. G. Tehrani, and E. Bonisoli, Energy harvesting using parametric resonant system due to time-varying damping, Mech. Syst. Sig. Process., vol. 79, pp. 149–165, 2016. DOI: 10.1016/j.ymssp.2016.02.037.
  • E. Brusa, Optimisation of a hybrid energy scavenger with piezoelectric/magnetic coupling for sensor-bearing units, AMR, vol. 745, pp. 41–56, 2013. DOI: 10.4028/www.scientific.net/AMR.745.41.
  • S. S. Raju, M. Umapathy, and G. Uma, Design and analysis of high output piezoelectric energy harvester using non uniform beam, Mech. Adv. Mater. Struct., vol. 27, no. 3, pp. 218–227, 2020. DOI: 10.1080/15376494.2018.1472341.
  • S. K. Panda, and J. Srinivas, Electro-structural analysis and optimization studies of laminated composite beam energy harvester, Mech. Adv. Mater. Struct., pp. 1–13, 2021. DOI: 10.1080/15376494.2021.1922787.
  • A. Aladwani, O. Aldraihem, and A. Baz, A distributed parameter cantilevered piezoelectric energy harvester with a dynamic magnifier, Mech. Adv. Mater. Struct., vol. 21, no. 7, pp. 566–578, 2014. DOI: 10.1080/15376494.2012.699600.
  • A. Erturk, and D. J. Inman, An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations, Smart Mater. Struct., vol. 18, no. 2, pp. 025009, 2009. DOI: 10.1088/0964-1726/18/2/025009.
  • Q. Lu, L. Liu, F. Scarpa, J. Leng, and Y. Liu, A novel composite multi-layer piezoelectric energy harvester, Compos. Struct., vol. 201, pp. 121–130, 2018. DOI: 10.1016/j.compstruct.2018.06.024.
  • D. Benasciutti, L. Moro, S. Zelenika, and E. Brusa, Vibration energy scavenging via piezoelectric bimorphs of optimized shapes, Microsyst. Technol., vol. 16, no. 5, pp. 657–668, 2010. Springer; . DOI: 10.1007/s00542-009-1000-5.
  • L. Mateu, and F. Moll, Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts, J. Intell. Mater. Syst. Struct., vol. 16, no. 10, pp. 835–845, 2005. DOI: 10.1177/1045389X05055280.
  • F. Goldschmidtboeing, and P. Woias, Characterization of different beam shapes for piezoelectric energy harvesting, J. Micromech. Microeng., vol. 18, no. 10, pp. 104013, 2008. DOI: 10.1088/0960-1317/18/10/104013.
  • E. L. Pradeesh, and S. Udhayakumar, Investigation on the geometry of beams for piezoelectric energy harvester, Microsyst. Technol., vol. 25, no. 9, pp. 3463–3475, 2019. DOI: 10.1007/s00542-018-4220-8.
  • A. G. A. Muthalif, and N. H. D. Nordin, Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: Modeling, simulation and experimental results, Mech. Syst. Sig. Process., vol. 54-55, pp. 417–426, 2015. DOI: 10.1016/j.ymssp.2014.07.014.
  • E. Brusa, S. Zelenika, L. Moro, and D. Benasciutti, Analytical characterization and experimental validation of performances of piezoelectric vibration energy scavengers, Smart Sensors Actuators MEMS IV, vol. 7362, 2009. p. 736204. DOI: 10.1117/12.821425.
  • Wu, H. Tang, L. Yang, Y. , and Soh C. K. A novel two-degrees-of-freedom piezoelectric energy harvester, J. Intell. Mater. Syst. Struct., no. 3, 2013. vol. 24, pp. 357–368. DOI: 10.1177/1045389X12457254.
  • Toyabur, R. M. Salauddin, M. and Park, J. Y. Design and experiment of piezoelectric multimodal energy harvester for low frequency vibration, Ceram. Int., 2017. vol. 43, pp. S675–S81. DOI: 10.1016/j.ceramint.2017.05.257.
  • Upadrashta, D., and Yang Y. Trident-shaped multimodal piezoelectric energy harvester, J. Aerosp. Eng., no. 5, 2018. vol. 31, pp. 04018070. DOI: 10.1061/(ASCE)AS.1943-5525.0000899.
  • Sun, S., and Tse P. W. Design and performance of a multimodal vibration-based energy harvester model for machine rotational frequencies, Appl. Phys. Lett., no. 24, 2017. vol. 110, pp. 243902. DOI: 10.1063/1.4986477.
  • Sun, S., and Tse P. W. Modeling of a horizontal asymmetric U-shaped vibration-based piezoelectric energy harvester (U-VPEH), Mech. Syst. Sig. Process., 2019. vol. 114, pp. 467–485. DOI: 10.1016/j.ymssp.2018.05.029.
  • Castagnetti, D., and Radi E. A piezoelectric based energy harvester with dynamic magnification: modelling, design and experimental assessment, Meccanica, no. 11-12, 2018. vol. 53, pp. 2725–2742. DOI: 10.1007/s11012-018-0860-0.
  • Castagnetti, D. Wideband fractal-inspired piezoelectric energy harvesters, Proc. Inst. Mech. Eng., Part L: J. Mater.: Design Applicat., no. 11, pp. 2614–2626, vol. 235, 2021. DOI: 10.1177/14644207211005504.
  • Bath, D., and Salehian A. A novel 3D folded zigzag piezoelectric energy harvester; Modeling and experiments, Smart Mater. Struct., no. 2, 2019. vol. 28, pp. 025011. DOI: 10.1088/1361-665X/aaf15b.
  • Fernandes, E, et al., Design, fabrication, and testing of a low frequency MEMS piezoelectromagnetic energy harvester, Smart Mater. Struct., no. 3, 2018. vol. 27, pp. 035017. DOI: 10.1088/1361-665X/aaaba5.
  • Udvardi, P, et al., Spiral-shaped piezoelectric MEMS cantilever array for fully implantable hearing systems, Micromachines, no. 10, 2017. vol. 8, pp. 311. DOI: 10.3390/mi8100311.
  • Liu, H. Lee, C. Kobayashi, T. Tay, C. J., and Quan C. A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz, Microsyst. Technol., no. 4, 2012. vol. 18, pp. 497–506. DOI: 10.1007/s00542-012-1424-1.
  • Jiang, W, et al., Modeling and design of V-shaped piezoelectric vibration energy harvester with stopper for low-frequency broadband and shock excitation, Sensors Actuator A: Phys., 2021. vol. 317, pp. 112458. DOI: 10.1016/j.sna.2020.112458.
  • Shu, Y. C. Lien, I. C., and Wu W. J. An improved analysis of the SSHI interface in piezoelectric energy harvesting, Smart Mater. Struct., no. 6, 2007. vol. 16, pp. 2253–2264. DOI: 10.1088/0964-1726/16/6/028.
  • Shu, Y. C., and Lien I. C. Analysis of power output for piezoelectric energy harvesting systems, Smart Mater. Struct., no. 6, 2006. vol. 15, pp. 1499–1512. DOI: 10.1088/0964-1726/15/6/001.
  • Guan, M. J., and Liao W. H. On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages, Smart Mater. Struct., no. 2, 2007. vol. 16, pp. 498–505. DOI: 10.1088/0964-1726/16/2/031.
  • Sayyaadi, H. , and Rahnama F. On the energy harvesting via doubly curved piezoelectric panels, J. Intell. Mater. Syst. Struct., no. 19, 2016. vol. 27, pp. 2692–2706. DOI: 10.1177/1045389X16641206.
  • Niiranen, J. Balobanov, V. Kiendl, J., and Hosseini S. Variational formulations, model comparisons and numerical methods for Euler–Bernoulli micro- and nano-beam models, Math. Mech. Solids, no. 1, 2019. vol. 24, pp. 312–335. DOI: 10.1177/1081286517739669.
  • Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Society. IEEE Standard on Piezoelectricity, IEEE, New York, 1987.
  • A. Erturk, and D. J. Inman. Piezoelectric Energy Harvesting, John Wiley & Sons, Hoboken, 2011.
  • Banks, H. T., and Inman D. J. On damping mechanisms in beams, J. Appl. Mech. Transact. ASME, no. 3, 1991. vol. 58, pp. 716–723. DOI: 10.1115/1.2897253.
  • Dietl, J. M. Wickenheiser, A. M., and Garcia E. A Timoshenko beam model for cantilevered piezoelectric energy harvesters, Smart Mater. Struct., no. 5, 2010. vol. 19, pp. 055018. DOI: 10.1088/0964-1726/19/5/055018.
  • Salarieh, H., and Ghorashi M. Free vibration of Timoshenko beam with finite mass rigid tip load and flexural-torsional coupling, Int. J. Mech. Sci., no. 7, 2006. vol. 48, pp. 763–779. DOI: 10.1016/j.ijmecsci.2006.01.008.
  • Han, S. M. Benaroya, H., and Wei T. Dynamics of transversely vibrating beams using four engineering theories, J. Sound Vib., no. 5, 1999. vol. 225, pp. 935–988. DOI: 10.1006/jsvi.1999.2257.
  • Pradeesh, E. L., and Udhayakumar S. Effect of placement of piezoelectric material and proof mass on the performance of piezoelectric energy harvester, Mech. Syst. Sig. Process., 2019. vol. 130, pp. 664–676. DOI: 10.1016/j.ymssp.2019.05.044.
  • Wang, L, et al., High accuracy comsol simulation method of bimorph cantilever for piezoelectric vibration energy harvesting, AIP Adv., no. 9, pp. 095067, 2019. vol. 9. DOI: 10.1063/1.5119328.
  • Brusa, E. Lemma, L., and Benasciutti D. Vibration analysis of a Sendzimir cold rolling mill and bearing fault detection, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., no. 8, 2010. vol. 224, pp. 1645–1654. DOI: 10.1243/09544062JMES1540.
  • E. Brusa, Development of a sentry smart bearing as a node for connectivity and monitoring of steelmaking system, 2017 IEEE International Symposium on Systems Engineering, ISSE 2017 - Proceedings, Institute of Electrical and Electronics Engineers Inc., 2017. DOI: 10.1109/SysEng.2017.8088257.
  • Erturk, A. Tarazaga, P. A. Farmer, J. R., and Inman D. J. Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams, J. Vibr. Acoust. Transact. ASME., no. 1, 2009. vol. 131, pp. 0110101–01101011. DOI: 10.1115/1.2981094.
  • Anton, S. R. Erturk, A., and Inman D. J. Bending strength of piezoelectric ceramics and single crystals for multifunctional load-bearing applications, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, no. 6, 2012. vol. 59, pp. 1085–1092. DOI: 10.1109/TUFFC.2012.2299.
  • de Marqui Junior, C. Erturk, A., and Inman D. J. An electromechanical finite element model for piezoelectric energy harvester plates, J. Sound Vib., no. 1–2, 2009. vol. 327, pp. 9–25. DOI: 10.1016/j.jsv.2009.05.015.
  • Machů, Z. Ševeček, O. Hadaš, Z., and Kotoul M. Modeling of electromechanical response and fracture resistance of multilayer piezoelectric energy harvester with residual stresses, J. Intell. Mater. Syst. Struct., no. 19, 2020. vol. 31, pp. 2261–2287. DOI: 10.1177/1045389X20942832.
  • S. Timoshenko, and D. Young, Elements of Strength of Materials, Van Nostrand Reinhold, New York, 1968.
  • S. Kundu, and H. B. Nemade, Modeling and simulation of a piezoelectric vibration energy harvester, Proc. Eng., vol. 144, 2016. pp. 568–575. DOI: 10.1016/j.proeng.2016.05.043.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.