390
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Finite element analysis of 2-D tubular braided composite based on geometrical models to study mechanical performances

& ORCID Icon
Pages 7542-7558 | Received 15 Jul 2021, Accepted 31 Oct 2021, Published online: 21 Nov 2021

References

  • A.K. Kaw, Mechanics of Composite Materials, CRC Press, Florida, 2005.
  • C. Ayranci and J. Carey, 2D braided composites: A review for stiffness critical applications, Compos. Struct., vol. 85, no. 1, pp. 43–58, 2008. DOI: 10.1016/j.compstruct.2007.10.004.
  • G.W. Melenka and J.P. Carey, Development of a generalized analytical model for tubular braided-architecture composites, J. Compos. Mater., vol. 51, no. 28, pp. 3861–3875, 2017. DOI: 10.1177/0021998317695421.
  • J. Carey, A. Fahim, and M. Munro, Design of braided composite cardiovascular catheters based on required axial, flexural, and torsional rigidities, J. Biomed. Mater. Res. B Appl. Biomater., vol. 70, no. 1, pp. 73–81, 2004. DOI: 10.1002/jbm.b.30017.
  • Y. Kyosev, Recent Developments in Braiding and Narrow Weaving, Springer, Cham, Switzerland, 2016.
  • Z.M. Huang, The mechanical properties of composites reinforced with woven and braided fabrics, Compos. Sci. Technol., vol. 60, no. 4, pp. 479–498, 2000. DOI: 10.1016/S0266-3538(99)00148-7.
  • L. Xu, S.J. Kim, C.-H. Ong, and S.K. Ha, Prediction of material properties of biaxial and triaxial braided textile composites, J. Compos. Mater., vol. 46, no. 18, pp. 2255–2270, 2012. DOI: 10.1177/0021998311431353.
  • J.P. Carey, Handbook of Advances in Braided Composite Materials: Theory, Production, Testing and Applications, Woodhead Publishing, Duxford, 2016.
  • F.K. Ko, Braiding, ASM Int. Eng. Mater. Handbook, vol. 21, pp. 519–528. 2001. DOI: 10.1361/asmhba0003361.
  • T. Liao and S. Adanur, 3D structural simulation of tubular braided fabrics for net-shape composites, Text. Res. J., vol. 70, no. 4, pp. 297–303, 2000. DOI: 10.1177/004051750007000403.
  • A. Rawal, P. Potluri, and C. Steele, Prediction of yarn paths in braided structures formed on a square pyramid, J. Ind. Text., vol. 36, no. 3, pp. 221–226, 2007. DOI: 10.1177/1528083707072354.
  • A. Rawal, P. Potluri, and C. Steele, Geometrical modeling of the yarn paths in three-dimensional braided structures, J. Ind. Text., vol. 35, no. 2, pp. 115–135, 2005. DOI: 10.1177/1528083705057574.
  • A. Gholami and G.W. Melenka, Generating geometrical models for tubular braided composites, CSME Conference, Charlottetown, PE, Canada, 2021. Available from https://library.upei.ca/islandora/object/csme2021%253A102.
  • T. Alpyildiz, 3D geometrical modelling of tubular braids, Text. Res. J., vol. 82, no. 5, pp. 443–453, 2012. DOI: 10.1177/0040517511427969.
  • A. Rawal, S. Gupta, H. Saraswat, and A. Sibal, Geometrical modeling of near-net shape braided preforms, Text. Res. J., vol. 85, no. 10, pp. 1055–1064, 2015. DOI: 10.1177/0040517514559587.
  • Y. Kyosev, Generalized geometric modeling of tubular and flat braided structures with arbitrary floating length and multiple filaments, Text. Res. J., vol. 86, no. 12, pp. 1270–1279, 2016. DOI: 10.1177/0040517515609261.
  • F. Ning, P. Potluri, W. Yu, and J. Hearle, Geometrical modeling of tubular braided structures using generalized rose curve, Text. Res. J., vol. 87, no. 4, pp. 474–486, 2017. DOI: 10.1177/0040517516632471.
  • H. Bale, M. Blacklock, M.R. Begley, D.B. Marshall, B.N. Cox, and R.O. Ritchie, Characterizing three-dimensional textile ceramic composites using synchrotron X-ray micro-computed-tomography, J. Am. Ceram. Soc., vol. 95, no. 1, pp. 392–402, 2012. DOI: 10.1111/j.1551-2916.2011.04802.x.
  • G.W. Melenka, E. Lepp, B.K.O. Cheung, and J.P. Carey, Micro-computed tomography analysis of tubular braided composites, Compos. Struct., vol. 131, pp. 384–396, 2015. DOI: 10.1016/j.compstruct.2015.05.057.
  • Y. Wang, Z. Liu, N. Liu, L. Hu, Y. Wei, and J. Ou, A new geometric modelling approach for 3D braided tubular composites base on free form deformation, Compos. Struct., vol. 136, pp. 75–85, 2016. DOI: 10.1016/j.compstruct.2015.09.036.
  • G.W. Melenka and A. Gholami, Fiber identification of braided composites using micro-computed tomography, Compos. Commun., vol. 27, pp. 100813, 2021. DOI: 10.1016/j.coco.2021.100813.
  • Xianbai Ji, Aditya M. Khatri, Elvin S.M. Chia, Ryan K.H. Cha, Bern T.B. Yeo, Sunil C. Joshi, Zhong Chen, Multi-scale simulation and finite-element-assisted computation of elastic properties of braided textile reinforced composites, J. Compos. Mater., vol. 48, no. 8, pp. 931–949, 2014. DOI: 10.1177/0021998313480198.
  • A. Shigang, Z. Xiaolei, M. Yiqi, P. Yongmao, and F. Daining, Finite element modeling of 3D orthogonal woven C/C composite based on micro-computed tomography experiment, Appl. Compos. Mater., vol. 21, no. 4, pp. 603–614, 2014. DOI: 10.1007/s10443-013-9353-4.
  • L. Zhang, D. Hu, R. Wang, Y. Zeng, and C. Cho, Establishing RVE model composed of dry fibers and matrix for 3D four-directional braided composites, J. Compos. Mater., vol. 53, no. 14, pp. 1917–1931, 2019. DOI: 10.1177/0021998318815735.
  • R. Wang, L. Zhang, D. Hu, and C. Cho, Evaluation of three unit cell models in predicting the mechanical behaviour of 3D four-directional braided composites, J. Compos. Mater., vol. 51, no. 27, pp. 3757–3767, 2017. DOI: 10.1177/0021998317692657.
  • J.J. Gou, W.Z. Fang, Y.J. Dai, S. Li, and W.Q. Tao, Multi-size unit cells to predict effective thermal conductivities of 3D four-directional braided composites, Compos. Struct., vol. 163, pp. 152–167, 2017. DOI: 10.1016/j.compstruct.2016.12.034.
  • K. Dong, J. Zhang, L. Jin, B. Gu, and B. Sun, Multi-scale finite element analyses on the thermal conductive behaviors of 3D braided composites, Compos. Struct., vol. 143, pp. 9–22, 2016. DOI: 10.1016/j.compstruct.2016.02.029.
  • Y.H. Chen and M.H. Aliabadi, Meshfree-based micromechanical modelling of twill woven composites, Compos. Part B Eng., vol. 197, pp. 108190, 2020. DOI: 10.1016/j.compositesb.2020.108190.
  • Stepan V. Lomov, Dmitry S. Ivanov, Ignaas Verpoest, Masaru Zako, Tetsusei Kurashiki, Hiroaki Nakai, Satoru Hirosawa, Meso-FE modelling of textile composites: Road map, data flow and algorithms, Compos. Sci. Technol., vol. 67, no. 9, pp. 1870–1891, 2007. DOI: 10.1016/j.compsci-tech.2006.10.017
  • G.P. Sendeckyj, S.S. Wang, W. Steven Johnson, W.W. Stinchcomb, and C.C. Chamis, Mechanics of composite materials: Past, present, and future, J. Compos. Technol. Res., vol. 11, no. 1, pp. 3–14, 1989. DOI: 10.1520/CTR10143J.
  • I. Verpoest and S.V. Lomov, Virtual textile composites software WiseTex: Integration with micro-mechanical, permeability and structural analysis, Compos. Sci. Technol., vol. 65, no. 15–16, pp. 2563–2574, 2005. DOI: 10.1016/j.compscitech.2005.05.031.
  • K. Xu, X. Qian, D. Duan, B. Chen, and L. Guo, A novel macro-meso finite element method for the mechanical analysis of 3D braided composites, Mech. Mater., vol. 126, pp. 163–175, 2018. DOI: 10.1016/j.mechmat.2018.08.007.
  • P. Zhang, L.-J. Gui, Z.-J. Fan, Q. Yu, and Z.-K. Li, Finite element modeling of the quasi-static axial crushing of braided composite tubes, Comput. Mater. Sci., vol. 73, pp. 146–153, 2013. DOI: 10.1016/j.commatsci.2013.01.026.
  • Y.-B. Wang, Z.-G. Liu, L. Hu, and Z. Wu, Predicting the elastic modulus of 3D braided composite tubes using geometrical mapping approach, 21st International Conference on Composite Materials, Xi’an, 2017.
  • Diantang Zhang, Guyu Feng, Mengyao Sun, Song Yu, Yuanhui Gu, Xiaodong Liu, Kun Qian, Finite element analysis of mesh size effect of 3D angle-interlock woven composites using voxel-based method, Appl. Compos. Mater., vol. 25, no. 4, pp. 905–920, 2018. DOI: 10.1007/s10443-018-9723-z.
  • G.W. Melenka and C. Ayranci, Advanced measurement techniques for braided composite structures: A review of current and upcoming trends, J. Compos. Mater., vol. 54, no. 25, pp. 3895–3917, 2020. DOI: 10.1177/0021998320903105.
  • J.D. Boerckel, D.E. Mason, A.M. McDermott, and E. Alsberg, Microcomputed tomography: Approaches and applications in bioengineering, Stem Cell Res. Ther., vol. 5, no. 6, pp. 144, 2014. DOI: 10.1186/scrt534.
  • D. Goyal, X. Tang, J.D. Whitcomb, and A.D. Kelkar, Effect of various parameters on effective engineering properties of 2 × 2 braided composites, Mech. Adv. Mater. Struct., vol. 12, no. 2, pp. 113–128, 2005. DOI: 10.1080/15376490490493998.
  • C. Ayranci, D. Romanyk, and J.P. Carey, Elastic properties of large-open-mesh 2D braided composites: Model predictions and initial experimental findings, Polym. Compos., vol. 31, no. 12, pp. 2017–2024, 2010. DOI: 10.1002/pc.20999.
  • Y. Kyosev, TexMind Software, Available from http://texmind.com/wp/.
  • Student, The Probable Error of a Mean, Biometrika., vol. 6, no. 1, pp. 1, 1908. DOI: 10.2307/2331554.
  • G.W. Melenka, B.M. Bruni-Bossio, C. Ayranci, and J.P. Carey, Examination of voids and geometry of bio-based braided composite structures, IOP Conf. Ser.: Mater. Sci. Eng., vol. 406, no. 1, pp. 012012, 2018. DOI: 10.1088/1757-899X/406/1/012012.
  • C. Unlusoy and G.W. Melenka, Flexural testing of cellulose fiber braided composites using three dimensional digital image correlation, Compos. Struct., vol. 230, pp. 111538, 2019. DOI: 10.1016/j.compstruct.2019.111538.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.