359
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Theoretical optimization of functional graded micropillars for strong and durable bioinspired dry adhesion

, , &
Pages 7723-7731 | Received 04 Aug 2021, Accepted 10 Nov 2021, Published online: 29 Nov 2021

References

  • K. Autumn, et al., Adhesive force of a single gecko foot-hair, Nature, vol. 405, no. 6787, pp. 681–685, 2000. DOI: 10.1038/35015073.
  • D. Chandra and S. Yang, Stability of high-aspect-ratio micropillar arrays against adhesive and capillary forces, Acc. Chem. Res., vol. 43, no. 8, pp. 1080–1091, 2010. DOI: 10.1021/ar100001a.
  • A. H. Ji, Z. H. Zhao, P. Manoonpong, W. Wang, G. M. Chen, and Z. D. Dai, A bio-inspired climbing robot with flexible pads and claws, J. Bionic Eng., vol. 15, no. 2, pp. 368–378, 2018. DOI: 10.1007/s42235-018-0028-6.
  • D. Santos, B. Heyneman, S. Kim, N. Esparza, and M. R. Cutkosky, Gecko-inspired climbing behaviors on vertical and overhanging surfaces, IEEE International Conference on Robotics and Automation, pp. 1125–1131, Pasadena, CA, May 19–23, 2008. DOI: 10.1109/ROBOT.2008.4543355.
  • H. Y. Luo, C. J. Wang, C. H. Linghu, K. X. Yu, C. Wang, and J. Z. Song, Laser-driven programmable non-contact transfer printing of objects onto arbitrary receivers via an active elastomeric microstructured stamp, Natl. Sci. Rev., vol. 7, no. 2, pp. 296–304, 2020. DOI: 10.1093/nsr/nwz109.
  • S. Kim, et al., Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing, Proc. Natl. Acad. Sci. USA, vol. 107, no. 40, pp. 17095–17100, 2010. DOI: 10.1073/pnas.1005828107.
  • B. J. Lee and D. Y. Khang, Non-deterministic transfer-printing of LED chips with controllable pitch using stretchable elastomeric stamps, Extreme Mech. Lett., vol. 45, p. 101287, 2021. DOI: 10.1016/j.eml.2021.101287.
  • H. Wu, et al., Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and Human-Machine Interfaces, Adv. Sci. (Weinh), vol. 8, no. 2, p. 2001938, 2021. DOI: 10.1002/advs.202001938.
  • F. Bellando, E. Garcia-Cordero, F. Wildhaber, J. Longo, H. Guerin, and A. M. Ionescu, Lab on skin™: 3D monolithically integrated zero-energy micro/nanofludics and FD SOI Ion sensitive FETs for wearable multi-sensing sweat applications, IEEE International Electron Devices Meeting (IEDM), pp. 18.1.1−18.1.4, San Francisco, CA, December 02–06, 2017. DOI: 10.1109/IEDM.2017.8268413.
  • Pere Roca-Cusachs, Félix Rico, Elena Martínez, Jordi Toset, Ramon Farré, and Daniel Navajas, Stability of microfabricated high aspect ratio structures in poly(dimethylsiloxane),” Langmuir, vol. 21, no. 12, pp. 5542–5548, 2005. DOI: 10.1021/la046931w.
  • A. K. Geim, S. V. Dubonos, I. V. Grigorieva, K. S. Novoselov, A. A. Zhukov, and S. Y. Shapoval, Microfabricated adhesive mimicking gecko foot-hair, Nat. Mater., vol. 2, no. 7, pp. 461–463, 2003. DOI: 10.1038/nmat917.
  • M. P. Murphy, S. Kim, and M. Sitti, Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives, ACS Appl. Mater. Interfaces, vol. 1, no. 4, pp. 849–855, 2009. DOI: 10.1021/am8002439.
  • C. Greiner, E. Arzt, and A. del Campo, Hierarchical gecko‐like adhesives, Adv. Mater., vol. 21, no. 4, pp. 479–482, 2009. DOI: 10.1002/adma.200801548.
  • D. M. Drotlef, M. Amjadi, M. Yunusa, and M. Sitti, Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors, Adv. Mater., vol. 29, no. 28, pp. 1701353, 2017. DOI: 10.1002/adma.201701353.
  • W. G. Bae, D. Kim, M. K. Kwak, L. Ha, S. M. Kang, and K. Y. Suh, Enhanced skin adhesive patch with modulus-tunable composite micropillars, Adv. Healthc. Mater., vol. 2, no. 1, pp. 109–113, 2013. DOI: 10.1002/adhm.201200098.
  • H. K. Minsky and K. T. Turner, Composite microposts with high dry adhesion strength, ACS Appl. Mater. Interfaces, vol. 9, no. 21, pp. 18322–18327, 2017. DOI: 10.1021/acsami.7b01491.
  • W. G. Bae, M. K. Kwak, H. E. Jeong, C. Pang, H. Jeong, and K. Y. Suh, Fabrication and analysis of enforced dry adhesives with core-shell micropillars, Soft Matter, vol. 9, no. 5, pp. 1422–1427, 2013. DOI: 10.1039/C2SM27323C.
  • C. H. Linghu, C. J. Wang, N. Cen, J. M. Wu, Z. F. Lai, and J. Z. Song, Rapidly tunable and highly reversible bio-inspired dry adhesion for transfer printing in air and a vacuum, Soft Matter, vol. 15, no. 1, pp. 30–37, 2019. DOI: 10.1039/c8sm01996g.
  • L. J. Xue, et al., Hybrid surface patterns mimicking the design of the adhesive toe pad of tree frog, ACS Nano, vol. 11, no. 10, pp. 9711–9719, 2017. DOI: 10.1021/acsnano.7b04994.
  • Z. Q. Liu, M. A. Meyers, Z. F. Zhang, and R. O. Ritchie, Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications, Prog. Mater. Sci., vol. 88, pp. 467–498, 2017. DOI: 10.1016/j.pmatsci.2017.04.013.
  • H. Peisker, J. Michels, and S. N. Gorb, Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata, Nat. Commun., vol. 4, p. 1661, 2013. DOI: 10.1038/ncomms2576.
  • Z. Wang, Slanted functional gradient micropillars for optimal bioinspired dry adhesion, ACS Nano, vol. 12, no. 2, pp. 1273–1284, 2018. DOI: 10.1021/acsnano.7b07493.
  • Q. Liu, et al., Adhesion enhancement of micropillar array by combining the adhesive design from gecko and tree frog, Small, vol. 17, no. 4, p. 2005493, 2021. DOI: 10.1002/smll.202005493.
  • S. N. Gorb and A. E. Filippov, Fibrillar adhesion with no clusterisation: Functional significance of material gradient along adhesive setae of insects, Beilstein J. Nanotechnol., vol. 5, pp. 837–845, 2014. DOI: 10.3762/bjnano.5.95.
  • N. J. Glassmaker, A. Jagota, C. Y. Hui, and J. Kim, Design of biomimetic fibrillar interfaces: 1. Making contact, J. R. Soc. Interface, vol. 1, no. 1, pp. 23–33, 2004. DOI: 10.1098/rsif.2004.0004.
  • C. Y. Hui, Y. Y. Lin, J. M. Baney, and A. Jagota, The accuracy of the geometric assumptions in the JKR (Johnson-Kendall-Roberts) theory of adhesion, J. Adhes. Sci. Technol., vol. 14, no. 10, pp. 1297–1319, 2000. DOI: 10.1163/156856100742203.
  • K. Autumn, C. Majidi, R. E. Groff, A. Dittmore, and R. Fearing, Effective elastic modulus of isolated gecko setal arrays, J. Exp. Biol., vol. 209, no. Pt 18, pp. 3558–3568, 2006. DOI: 10.1242/jeb.02469.
  • Y. Zhang, C. W. Lo, J. A. Taylor, and S. Yang, Replica molding of high-aspect-ratio polymeric nanopillar arrays with high fidelity, Langmuir, vol. 22, no. 20, pp. 8595–8601, 2006. DOI: 10.1021/la061372+.
  • K. L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985.
  • Q. Xie, T. H. Hao, C. Wang, Z. H. Kang, Z. H. Shi, and J. F. Zhang, The mechanical mechanism and influencing factors of ice adhesion strength on ice-phobic coating, JMSE, vol. 9, no. 3, p. 315, 2021. DOI: 10.3390/jmse9030315.
  • L. D. C. Ramalho, R. D. S. G. Campilho, J. Belinha, and L. F. M. da Silva, Static strength prediction of adhesive joints: A review, Int. J. Adhes. Adhes., vol. 96, p. 102451, 2020. DOI: 10.1016/j.ijadhadh.2019.102451.
  • J. A. B. P. Neto, R. D. S. G. Campilho, and L. F. M. da Silva, Parametric study of adhesive joints with composites, Int. J. Adhes. Adhes., vol. 37, pp. 96–101, 2012. DOI: 10.1016/j.ijadhadh.2012.01.019.
  • H. H. Schleich and W. Kästle, Ultrastrukturen an gecko-zehen (Reptilia: Sauria: Gekkonidae), Amphib. Reptilia., vol. 7, no. 2, pp. 141–166, 1986. DOI: 10.1163/156853886X00361.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.