365
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Bending characteristics of carbon nanotubes: Micropolar elasticity models and molecular dynamics simulations

, , &
Pages 189-206 | Received 27 Sep 2021, Accepted 23 Nov 2021, Published online: 20 Dec 2021

References

  • S. Iijima, Helical microtubules of graphitic carbon, Nature, vol. 354, no. 6348, pp. 56–58, 1991. DOI: 10.1038/354056a0.
  • S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol. 363, no. 6430, pp. 603–605, 1993. DOI: 10.1038/363603a0.
  • S. Chopra, K. McGuire, N. Gothard, A. Rao, and A. Pham, Selective gas detection using a carbon nanotube sensor, Appl. Phys. Lett., vol. 83, no. 11, pp. 2280–2282, 2003. DOI: 10.1063/1.1610251.
  • A. Fennimore, T. Yuzvinsky, W.-Q. Han, M. Fuhrer, J. Cumings, and A. Zettl, Rotational actuators based on carbon nanotubes, Nature, vol. 424, no. 6947, pp. 408–410, 2003. DOI: 10.1038/nature01823.
  • Y. Yun, V. Shanov, Y. Tu, M. J. Schulz, S. Yarmolenko, S. Neralla, J. Sankar, and S. Subramaniam, A multi-wall carbon nanotube tower electrochemical actuator, Nano Lett., vol. 6, no. 4, pp. 689–693, 2006. DOI: 10.1021/nl052435w.
  • P. Williams, S. Papadakis, A. Patel, M. Falvo, S. Washburn, and R. Superfine, Fabrication of nanometer-scale mechanical devices incorporating individual multiwalled carbon nanotubes as torsional springs, Appl. Phys. Lett., vol. 82, no. 5, pp. 805–807, 2003. DOI: 10.1063/1.1538346.
  • S. Papadakis et al., Resonant oscillators with carbon-nanotube torsion springs, Phys. Rev. Lett., vol. 93, no. 14, pp. 146101, 2004.
  • Y. Zhang, L.F. Duan, Y. Zhang, J. Wang, H. Geng, and Q. Zhang, Advances in conceptual electronic nanodevices based on 0d and 1d nanomaterials, Nano-Micro Lett., vol. 6, no. 1, pp. 1–19, 2014. DOI: 10.1007/BF03353763.
  • R. Andrews and M. Weisenberger, Carbon nanotube polymer composites, Curr. Opin. Solid State Mater. Sci., vol. 8, no. 1, pp. 31–37, 2004. DOI: 10.1016/j.cossms.2003.10.006.
  • M. Moniruzzaman and K.I. Winey, Polymer nanocomposites containing carbon nanotubes, Macromolecules, vol. 39, no. 16, pp. 5194–5205, 2006. DOI: 10.1021/ma060733p.
  • W. Wang and N. Murthy, Characterization of nanotube-reinforced polymer composites. In: Roham Rafiee (Ed.), Carbon Nanotubes, Chap. 8. IntechOpen, Rijeka, pp. 201–232, 2011.
  • R. Rafiee, Carbon Nanotube-Reinforced Polymers: From Nanoscale to Macroscale, Micro and Nano Technologies, Elsevier Science, Amsterdam, Netherlands, 2017.
  • C.V. Nguyen et al., Carbon nanotube tip probes: Stability and lateral resolution in scanning probe microscopy and application to surface science in semiconductors, Nanotechnology, vol. 12, no. 3, pp. 363–367, 2001. DOI: 10.1088/0957-4484/12/3/326.
  • J.-H. Lee, W.-S. Kang, B.-S. Choi, S.-W. Choi, and J.-H. Kim , Fabrication of carbon nanotube AFM probes using the Langmuir-Blodgett technique, Ultramicroscopy, vol. 108, no. 10, pp. 1163–1167, 2008. DOI: 10.1016/j.ultramic.2008.04.073.
  • R.M. Stevens, New carbon nanotube AFM probe technology, Mater. Today, vol. 12, no. 10, pp. 42–45, 2009. DOI: 10.1016/S1369-7021(09)70276-7.
  • H.-C. Liu, D. Fong, G.A. Dahlen, M. Osborn, S. Hand, and J.R. Osborne, Carbon nanotube AFM probes for microlithography process control. In: Metrology, Inspection, and Process Control for Microlithography XX, Vol. 6152. International Society for Optics and Photonics, San Jose, California, United States, pp. 61522Y, 2006.
  • B.I. Yakobson and R.E. Smalley, Fullerene nanotubes: C 1,000,000 and beyond: Some unusual new molecules—long, hollow fibers with tantalizing electronic and mechanical properties—have joined diamonds and graphite in the carbon family, Am. Sci., vol. 85, pp. 324–337, 1997.
  • V.N. Popov, Carbon nanotubes: Properties and application, Mater. Sci. Eng. R Rep., vol. 43, no. 3, pp. 61–102, 2004. DOI: 10.1016/j.mser.2003.10.001.
  • J.-P. Salvetat et al., Mechanical properties of carbon nanotubes, Appl. Phys. A, vol. 69, no. 3, pp. 255–260, 1999. DOI: 10.1007/s003390050999.
  • M.S. Dresselhaus, G. Dresselhaus, P. Eklund, and A. Rao, Carbon nanotubes. In: The Physics of Fullerene-Based and Fullerene-Related Materials, Springer, Heidelberg, pp. 331–379, 2000.
  • K. Liew, X. He, and C. Wong, On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation, Acta Mater., vol. 52, no. 9, pp. 2521–2527, 2004. DOI: 10.1016/j.actamat.2004.01.043.
  • Z. Yao, C.-C. Zhu, M. Cheng, and J. Liu, Mechanical properties of carbon nanotube by molecular dynamics simulation, Comput. Mater. Sci., vol. 22, no. 3–4, pp. 180–184, 2001. DOI: 10.1016/S0927-0256(01)00187-2.
  • S.A. Eftekhari, D. Toghraie, M. Hekmatifar, and R. Sabetvand, Mechanical and thermal stability of armchair and zig-zag carbon sheets using classical MD simulation with tersoff potential, Physica E Low Dimens. Syst. Nanostruct., vol. 133, pp. 114789, 2021. DOI: 10.1016/j.physe.2021.114789.
  • R. Izadi, E. Ghavanloo, and A. Nayebi, Elastic properties of polymer composites reinforced with c60 fullerene and carbon onion: Molecular dynamics simulation, Physica B Condens. Matter., vol. 574, pp. 311636, 2019. DOI: 10.1016/j.physb.2019.08.013.
  • E. Ghavanloo, R. Izadi, and A. Nayebi, Computational modeling of the effective young’s modulus values of fullerene molecules: A combined molecular dynamics simulation and continuum shell model, J. Mol. Model., vol. 24, no. 3, pp. 1–7, 2018.
  • R. Izadi, A. Nayebi, and E. Ghavanloo, Molecular dynamics simulations of structural instability of fullerene family under tension force, Mol. Simul., vol. 44, no. 16, pp. 1338–1343, 2018. DOI: 10.1080/08927022.2018.1502883.
  • G. Giannopoulos, A. Tsiros, and S. Georgantzinos, Prediction of elastic mechanical behavior and stability of single-walled carbon nanotubes using bar elements, Mech. Adv. Mater. Struct., vol. 20, no. 9, pp. 730–741, 2013. DOI: 10.1080/15376494.2012.676714.
  • M. Meo and M. Rossi, Prediction of young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling, Compos. Sci. Technol., vol. 66, no. 11–12, pp. 1597–1605, 2006. DOI: 10.1016/j.compscitech.2005.11.015.
  • S.K. Georgantzinos and G.I. Giannopoulos, Thermomechanical buckling of single walled carbon nanotubes by a structural mechanics method, Diamond Relat. Mater., vol. 80, pp. 27–37, 2017. DOI: 10.1016/j.diamond.2017.10.005.
  • M. Rahmandoust and A. Öchsner , On finite element modeling of single- and multi-walled carbon nanotubes, J. Nanosci. Nanotechnol., vol. 12, no. 10, pp. 8129–8136, 2012. DOI: 10.1166/jnn.2012.4521.
  • D. Rapaport, The Art of Molecular Dynamics Simulation, 2nd ed. Cambridge University Press, Cambridge, England, 2004.
  • R.S. Ruoff, D. Qian, and W.K. Liu, Mechanical properties of carbon nanotubes: Theoretical predictions and experimental measurements, C R Phys., vol. 4, no. 9, pp. 993–1008, 2003. DOI: 10.1016/j.crhy.2003.08.001.
  • K. Dilrukshi, M. Dewapriya, and U. Puswewala, Size dependency and potential field influence on deriving mechanical properties of carbon nanotubes using molecular dynamics, Theor. Appl. Mech. Lett., vol. 5, no. 4, pp. 167–172, 2015. DOI: 10.1016/j.taml.2015.05.005.
  • P. Trovalusci, Molecular approaches for multifield continua: Origins and current developments. In: Tomasz Sadowski and Patrizia Trovalusci (Eds.), Multiscale Modeling of Complex Materials, Springer, Vienna, pp. 211–278, 2014.
  • P. Trovalusci, D. Capecchi, and G. Ruta, Genesis of the multiscale approach for materials with microstructure, Arch. Appl. Mech., vol. 79, no. 11, pp. 981–997, 2009. DOI: 10.1007/s00419-008-0269-7.
  • R. Izadi, A. Nayebi, and E. Ghavanloo, Combined molecular dynamics–micromechanics methods to predict young’s modulus of fullerene-reinforced polymer composites, Eur. Phys. J. Plus, vol. 136, no. 8, pp. 1–15, 2021. DOI: 10.1140/epjp/s13360-021-01819-9.
  • E. Ghavanloo, H. Rafii-Tabar, and S.A. Fazelzadeh, Computational Continuum Mechanics of Nanoscopic Structures, Springer, Cham, 2019.
  • C.-H. Kiang, M. Endo, P. Ajayan, G. Dresselhaus, and M. Dresselhaus, Size effects in carbon nanotubes, Phys. Rev. Lett., vol. 81, no. 9, pp. 1869–1872, 1998. DOI: 10.1103/PhysRevLett.81.1869.
  • S. Xiao and W. Hou, Studies of size effects on carbon nanotubes’ mechanical properties by using different potential functions, Fuller. Nanotub. Carbon Nanostruct., vol. 14, no. 1, pp. 9–16, 2006. DOI: 10.1080/15363830500538425.
  • V. Vijayaraghavan and C. Wong, Temperature, defect and size effect on the elastic properties of imperfectly straight carbon nanotubes by using molecular dynamics simulation, Comput. Mater. Sci., vol. 71, pp. 184–191, 2013. DOI: 10.1016/j.commatsci.2012.12.025.
  • M.A. Khorshidi, Validation of weakening effect in modified couple stress theory: Dispersion analysis of carbon nanotubes, Int. J. Mech. Sci., vol. 170, pp. 105358, 2020.
  • M.M.S. Fakhrabadi, A. Rastgoo, M.T. Ahmadian, and M.M. Mashhadi, Dynamic analysis of carbon nanotubes under electrostatic actuation using modified couple stress theory, Acta Mech., vol. 225, no. 6, pp. 1523–1535, 2014. DOI: 10.1007/s00707-013-1013-0.
  • R.D. Mindlin, Micro-structure in linear elasticity, Arch. Rational Mech. Anal., vol. 16, no. 1, pp. 51–78, 1964. DOI: 10.1007/BF00248490.
  • I.A. Kunin, The theory of elastic media with microstructure and the theory of dislocations. In: E. Kröner (ed.), Mechanics of Generalized Continua, Springer, Berlin Heidelberg, pp. 321–329, 1968.
  • G. Capriz, Continua with Microstructure, Springer Tracts in Natural Philosophy, Springer-Verlag, New York, NY, USA, 1989.
  • M. Gurtin, Configurational Forces as Basis Concept of Continuum Physics, Springer-Verlag, Berlin/Heidelberg, Germany, 1999.
  • A. Eringen, Microcontinuum Field Theory, Springer, Berlin/Heidelberg, Germany, 1999.
  • A.C. Eringen, Nonlocal Continuum Field Theories, Springer Science & Business Media, New York, NY, USA, 2002.
  • I. Kunin, On foundations of the theory of elastic media with microstructure, Int. J. Eng. Sci., vol. 22, no. 8–10, pp. 969–978, 1984. DOI: 10.1016/0020-7225(84)90098-3.
  • G. Maugin, Material Inhomogeneities in Elasticity, Applied Mathematics, Taylor & Francis, Abingdon, UK, 1993.
  • M. Tuna and P. Trovalusci, Stress distribution around an elliptic hole in a plate with ‘implicit’ and ‘explicit’ non-local models, Compos. Struct., vol. 256, pp. 113003, 2021. DOI: 10.1016/j.compstruct.2020.113003.
  • M. Tuna, L. Leonetti, P. Trovalusci, and M. Kirca, ‘Explicit’ and ‘implicit’ non-local continuum descriptions: Plate with circular hole. In: Esmaeal Ghavanloo, S. Ahmad Fazelzadeh, and Francesco Marotti de Sciarra (Eds.), Size-Dependent Continuum Mechanics Approaches: Theory and Applications, Springer International Publishing, Berlin/Heidelberg, Germany, p. 311, 2021.
  • M. Tuna, L. Leonetti, P. Trovalusci, and M. Kirca, ‘Explicit’ and ‘implicit’ non-local continuous descriptions for a plate with circular inclusion in tension, Meccanica, vol. 55, no. 4, pp. 927–944, 2020. DOI: 10.1007/s11012-019-01091-3.
  • M. Tuna and P. Trovalusci, Scale dependent continuum approaches for discontinuous assemblies: ‘Explicit’ and ‘implicit’ non-local models, Mech. Res. Commun., vol. 103, pp. 103461, 2020. DOI: 10.1016/j.mechrescom.2019.103461.
  • A. Eringen and D. Edelen, On nonlocal elasticity, Int. J. Eng. Sci., vol. 10, no. 3, pp. 233–248, 1972. DOI: 10.1016/0020-7225(72)90039-0.
  • M. Tuna, M. Kirca, and P. Trovalusci, Deformation of atomic models and their equivalent continuum counterparts using eringen’s two-phase local/nonlocal model, Mech. Res. Commun., vol. 97, pp. 26–32, 2019. DOI: 10.1016/j.mechrescom.2019.04.004.
  • A.C. Eringen, Linear theory of micropolar elasticity, J. Appl. Math. Mech., vol. 15, pp. 909–923, 1966.
  • W. Nowacki, Theory of Micropolar Elasticity, Springer Verlag, Berlin/Heidelberg, Germany, 1970.
  • P. Trovalusci and A. Pau, Derivation of microstructured continua from lattice systems via principle of virtual works: The case of masonry-like materials as micropolar, second gradient and classical continua, Acta Mech., vol. 225, no. 1, pp. 157–177, 2014. DOI: 10.1007/s00707-013-0936-9.
  • L. Leonetti, F. Greco, P. Trovalusci, R. Luciano, and R. Masiani, A multiscale damage analysis of periodic composites using a couple-stress/Cauchy multidomain model: Application to masonry structures, Compos. B Eng., vol. 141, pp. 50–59, 2018. DOI: 10.1016/j.compositesb.2017.12.025.
  • N. Fantuzzi, P. Trovalusci, and S. Dharasura, Mechanical behavior of anisotropic composite materials as micropolar continua, Front. Mater., vol. 6, pp. 59, 2019. DOI: 10.3389/fmats.2019.00059.
  • P. Trovalusci and G. Augusti, A continuum model with microstructure for materials with flaws and inclusions, J. Phys. IV, vol. 8, no. PR8, p. 383, 1998. DOI: 10.1051/jp4:1998847.
  • P.M. Mariano and P. Trovalusci, Constitutive relations for elastic microcracked bodies: From a lattice model to a multifield continuum description, Int. J. Damage Mech., vol. 8, no. 2, pp. 153–173, 1999. DOI: 10.1177/105678959900800204.
  • A. Pau and P. Trovalusci, A multifield continuum model for the description of the response of microporous/microcracked composite materials, Mech. Mater., vol. 160, pp. 103965, 2021. DOI: 10.1016/j.mechmat.2021.103965.
  • M. Colatosti, N. Fantuzzi, and P. Trovalusci, Dynamic characterization of microstructured materials made of hexagonal-shape particles with elastic interfaces, Nanomaterials, vol. 11, no. 7, pp. 1781, 2021. DOI: 10.3390/nano11071781.
  • N. Fantuzzi, P. Trovalusci, and R. Luciano, Material symmetries in homogenized hexagonal-shaped composites as Cosserat continua, Symmetry, vol. 12, no. 3, pp. 441, 2020. DOI: 10.3390/sym12030441.
  • D. Capecchi, G. Ruta, and P. Trovalusci, Voigt and Poincaré’s mechanistic–energetic approaches to linear elasticity and suggestions for multiscale modelling, Arch. Appl. Mech., vol. 81, no. 11, pp. 1573–1584, 2011. DOI: 10.1007/s00419-010-0502-z.
  • V. Sansalone, P. Trovalusci, and F. Cleri, Multiscale modeling of materials by a multifield approach: Microscopic stress and strain distribution in fiber–matrix composites, Acta Mater., vol. 54, no. 13, pp. 3485–3492, 2006. DOI: 10.1016/j.actamat.2006.03.041.
  • M. Pingaro, E. Reccia, P. Trovalusci, and R. Masiani, Fast statistical homogenization procedure (FSHP) for particle random composites using virtual element method, Comput. Mech., vol. 64, no. 1, pp. 197–210, 2019. DOI: 10.1007/s00466-018-1665-7.
  • P. Trovalusci, M.L. De Bellis, and M. Ostoja-Starzewski, A statistically-based homogenization approach for particle random composites as micropolar continua. In: Generalized Continua as Models for Classical and Advanced Materials, Springer, Berlin/Heidelberg, Germany, pp. 425–441, 2016.
  • R. Toupin, Elastic materials with couple-stresses, Arch. Rational Mech. Anal., vol. 11, no. 1, pp. 385–414, 1962. DOI: 10.1007/BF00253945.
  • R. Mindlin and H. Tiersten, Effects of couple-stresses in linear elasticity, Arch. Rational Mech. Anal., vol. 11, no. 1, pp. 415–448, 1962. DOI: 10.1007/BF00253946.
  • W. Koiter, Couple-stresses in the theory of elasticity, I & II, Proc. K. Ned. Akad. Wet. (B), vol. 67, pp. 17–44, 1964.
  • M. Sokolowski, Theory of Couple-Stresses in Bodies with Constrained Rotations, No. 26 in CISM International Centre for Mechanical Sciences, Springer, 1970.
  • P. Trovalusci and R. Masiani, Material symmetries of micropolar continua equivalent to lattices, Int. J. Solids Struct., vol. 36, no. 14, pp. 2091–2108, 1999. DOI: 10.1016/S0020-7683(98)00073-0.
  • A.R. Hadjesfandiari and G.F. Dargush, Couple stress theory for solids, Int. J. Solids Struct., vol. 48, no. 18, pp. 2496–2510, 2011. DOI: 10.1016/j.ijsolstr.2011.05.002.
  • A.R. Hadjesfandiari and G.F. Dargush, An assessment of couple stress theories, Preprints 2018, 2018110236, DOI: 10.20944/preprints201811.0236.v1.
  • F. Yang, A. Chong, D.C.C. Lam, and P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., vol. 39, no. 10, pp. 2731–2743, 2002. DOI: 10.1016/S0020-7683(02)00152-X.
  • H. Ma, X.-L. Gao, and J. Reddy, A microstructure-dependent timoshenko beam model based on a modified couple stress theory, J. Mech. Phys. Solids, vol. 56, no. 12, pp. 3379–3391, 2008. DOI: 10.1016/j.jmps.2008.09.007.
  • E. Jomehzadeh, H. Noori, and A. Saidi, The size-dependent vibration analysis of micro-plates based on a modified couple stress theory, Physica E Low Dimens. Syst. Nanostruct., vol. 43, no. 4, pp. 877–883, 2011. DOI: 10.1016/j.physe.2010.11.005.
  • E.M. Miandoab, H.N. Pishkenari, A. Yousefi-Koma, and H. Hoorzad, Polysilicon nano-beam model based on modified couple stress and Eringen’s nonlocal elasticity theories, Physica E Low Dimens. Syst. Nanostruct., vol. 63, pp. 223–228, 2014. DOI: 10.1016/j.physe.2014.05.025.
  • F. Khajueenejad and J. Ghanbari, Internal length parameter and buckling analysis of carbon nanotubes using modified couple stress theory and Timoshenko beam model, Mater. Res. Express, vol. 2, no. 10, pp. 105009, 2015. DOI: 10.1088/2053-1591/2/10/105009.
  • B. Akgöz and Ö. Civalek, Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories, J Comput. Theoret. Nanosci., vol. 8, no. 9, pp. 1821–1827, 2011. DOI: 10.1166/jctn.2011.1888.
  • Y.Y. Zhang, C.M. Wang, W. Duan, Y. Xiang, and Z. Zong, Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes, Nanotechnology, vol. 20, no. 39, pp. 395707, 2009. DOI: 10.1088/0957-4484/20/39/395707.
  • Q. Wang, Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes, Int. J. Solids Struct., vol. 41, no. 20, pp. 5451–5461, 2004. DOI: 10.1016/j.ijsolstr.2004.05.002.
  • I. Arias and M. Arroyo, Size-dependent nonlinear elastic scaling of multiwalled carbon nanotubes, Phys. Rev. Lett., vol. 100, no. 8, pp. 085503, 2008.
  • H. Farokhi, M.P. Païdoussis, and A.K. Misra, A new nonlinear model for analyzing the behaviour of carbon nanotube-based resonators, J. Sound Vib., vol. 378, pp. 56–75, 2016. DOI: 10.1016/j.jsv.2016.05.008.
  • Q. Wang, Wave propagation in carbon nanotubes via nonlocal continuum mechanics, J. Appl. Phys., vol. 98, no. 12, pp. 124301, 2005. DOI: 10.1063/1.2141648.
  • M. Shaat and A. Abdelkefi, Reporting the sensitivities and resolutions of cnt-based resonators for mass sensing, Mater. Des., vol. 114, pp. 591–598, 2017. DOI: 10.1016/j.matdes.2016.11.104.
  • Y.-G. Hu, K.M. Liew, Q. Wang, X. He, and B. Yakobson, Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes, J. Mech. Phys. Solids, vol. 56, no. 12, pp. 3475–3485, 2008. DOI: 10.1016/j.jmps.2008.08.010.
  • B. Arash and Q. Wang, A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes, Comput. Mater. Sci., vol. 51, no. 1, pp. 303–313, 2012. DOI: 10.1016/j.commatsci.2011.07.040.
  • Y. Zhang, G. Liu, and J. Wang, Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression, Phys. Rev. B, vol. 70, no. 20, pp. 205430, 2004. DOI: 10.1103/PhysRevB.70.205430.
  • Y. Zhang, G. Liu, and X. Han, Effect of small length scale on elastic buckling of multi-walled carbon nanotubes under radial pressure, Phys. Lett. A, vol. 349, no. 5, pp. 370–376, 2006. DOI: 10.1016/j.physleta.2005.09.036.
  • F. Khademolhosseini, R. Rajapakse, and A. Nojeh, Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models, Comput. Mater. Sci., vol. 48, no. 4, pp. 736–742, 2010. DOI: 10.1016/j.commatsci.2010.03.021.
  • H.-S. Shen and C.-L. Zhang, Torsional buckling and postbuckling of double-walled carbon nanotubes by nonlocal shear deformable shell model, Compos. Struct., vol. 92, no. 5, pp. 1073–1084, 2010. DOI: 10.1016/j.compstruct.2009.10.002.
  • R. Ansari, H. Rouhi, and S. Sahmani, Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics, Int. J. Mech. Sci., vol. 53, no. 9, pp. 786–792, 2011. DOI: 10.1016/j.ijmecsci.2011.06.010.
  • M. Tuna and M.K. Irca, Unification of Eringen’s nonlocal parameter through an optimization-based approach, Mech. Adv. Mater. Struct., vol. 28, no. 8, pp. 839–848, 2021. DOI: 10.1080/15376494.2019.1601312.
  • G. Xie and S. Long, Elastic vibration behaviors oof carbon nanotubes based on micropolar mechanics, Comput. Mater. Contin., vol. 4, pp. 11, 2006.
  • L. Wang and H. Hu, Flexural wave propagation in single-walled carbon nanotubes, Phys. Rev. B, vol. 71, no. 19, pp. 195412, 2005. DOI: 10.1103/PhysRevB.71.195412.
  • R. Izadi, M. Tuna, P. Trovalusci, and E. Ghavanloo, Torsional characteristics of carbon nanotubes: Micropolar elasticity models and molecular dynamics simulation, Nanomaterials, vol. 11, no. 2, pp. 453, 2021. DOI: 10.3390/nano11020453.
  • T. Chang and J. Hou, Molecular dynamics simulations on buckling of multiwalled carbon nanotubes under bending, J. Appl. Phys., vol. 100, no. 11, pp. 114327, 2006. DOI: 10.1063/1.2400096.
  • S. Iijima, C. Brabec, A. Maiti, and J. Bernholc, Structural flexibility of carbon nanotubes, J. Chem. Phys., vol. 104, no. 5, pp. 2089–2092, 1996. DOI: 10.1063/1.470966.
  • G. Cao and X. Chen, Buckling of single-walled carbon nanotubes upon bending: Molecular dynamics simulations and finite element method, Phys. Rev. B, vol. 73, no. 15, pp. 155435, 2006. DOI: 10.1103/PhysRevB.73.155435.
  • A. Kutana and K. Giapis, Transient deformation regime in bending of single-walled carbon nanotubes, Phys. Rev. Lett., vol. 97, no. 24, pp. 245501, 2006. DOI: 10.1103/PhysRevLett.97.245501.
  • I.A. Nikiforov, A study of bending deformations in carbon nanotubes using the objective molecular dynamics method, thesis, Master of Science, University of Minnesota, Minneapolis, USA, 2010.
  • P. Poncharal, Z. Wang, D. Ugarte, and W.A. De Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science, vol. 283, no. 5407, pp. 1513–1516, 1999. DOI: 10.1126/science.283.5407.1513.
  • R. Lakes, Experimental methods for study of cosserat elastic solids and other generalized elastic continua. In: H. Muhlhaus (ed.), Continuum Models for Materials with Microstructure, Wiley, New York, pp. 1–22, 1995.
  • N. Hamada, S.-i. Sawada, and A. Oshiyama, New one-dimensional conductors: Graphitic microtubules, Phys. Rev. Lett., vol. 68, no. 10, pp. 1579–1581, 1992. DOI: 10.1103/PhysRevLett.68.1579.
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., vol. 117, no. 1, pp. 1–19, 1995. DOI: 10.1006/jcph.1995.1039.
  • W. Humphrey, A. Dalke, and K. Schulten, VMD - Visual molecular dynamics, J. Mol. Graph., vol. 14, no. 1, pp. 33–38, 1996. DOI: 10.1016/0263-7855(96)00018-5.
  • S. Stuart, A. Tutein, and J. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys., vol. 112, no. 14, pp. 6472–6486, 2000. DOI: 10.1063/1.481208.
  • S. Georgantzinos, G. Giannopoulos, and N. Anifantis, On the coupling of axial and shear deformations of single-walled carbon nanotubes and graphene: A numerical study, Proc. Inst. Mech. Eng., Part N: J. Nanoeng. Nanosyst., vol. 224, no. 4, pp. 163–172, 2010. DOI: 10.1177/1740349911412874.
  • D. Srivastava, C. Wei, and K. Cho, Nanomechanics of carbon nanotubes and composites, Appl. Mech. Rev., vol. 56, no. 2, pp. 215–230, 2003. DOI: 10.1115/1.1538625.
  • P. Papanikos, D. Nikolopoulos, and K. Tserpes, Equivalent beams for carbon nanotubes, Comput. Mater. Sci., vol. 43, no. 2, pp. 345–352, 2008. DOI: 10.1016/j.commatsci.2007.12.010.
  • B.I. Yakobson, C. Brabec, and J. Bernholc, Nanomechanics of carbon tubes: Instabilities beyond linear response, Phys. Rev. Lett., vol. 76, no. 14, pp. 2511–2514, 1996. DOI: 10.1103/PhysRevLett.76.2511.
  • G. Krishna Reddy and N. Venkatasubramanian, On the flexural rigidity of a micropolar elastic circular cylinder, ASME. J. Appl. Mech., vol. 45, no. 2, pp. 429–431, 1978. DOI: 10.1115/1.3424317.
  • R. Gauthier and W. Jahsman, A quest for micropolar elastic constants, J. Appl. Mech., vol. 42, no. 2, pp. 369–374, 1975. DOI: 10.1115/1.3423583.
  • K.M. Liew, Y. Jianwei, and L.-W. Zhang, Mechanical Behaviors of Carbon Nanotubes: Theoretical and Numerical Approaches, William Andrew, Amsterdam, Netherlands, 2016.
  • K.N. Kudin, G.E. Scuseria, and B.I. Yakobson, C2 f, bn, and c nanoshell elasticity from ab initio computations, Phys. Rev. B, vol. 64, no. 23, pp. 235406, 2001. DOI: 10.1103/PhysRevB.64.235406.
  • E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Elastic properties of c and b x c y n z composite nanotubes, Phys. Rev. Lett., vol. 80, no. 20, pp. 4502–4505, 1998. DOI: 10.1103/PhysRevLett.80.4502.
  • J.P. Lu, Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett., vol. 79, no. 7, pp. 1297–1300, 1997. DOI: 10.1103/PhysRevLett.79.1297.
  • G.K. Reddy and N. Venkatasubramanian, On the flexural rigidity of a micropolar elastic circular cylindrical tube, Int. J. Eng. Sci., vol. 17, no. 9, pp. 1015–1021, 1979. DOI: 10.1016/0020-7225(79)90023-5.
  • A. Taliercio, Torsion of micropolar hollow circular cylinders, Mech. Res. Commun., vol. 37, no. 4, pp. 406–411, 2010. DOI: 10.1016/j.mechrescom.2010.05.003.
  • D. Iesan, Bending of a micropolar elastic beam by terminal couples, Mathematica, vol. 17, pp. 483–490, 1979.
  • F. Beer, R. Johnston, J. DeWolf, and D. Mazurek, Mechanics of Materials, 8th ed. McGraw-Hill Education, New York, NY, USA, 2020.
  • Z. Rueger and R.S. Lakes, Experimental cosserat elasticity in open-cell polymer foam, Philos. Mag., vol. 96, no. 2, pp. 93–111, 2016. DOI: 10.1080/14786435.2015.1125541.
  • R. Lakes and W. Drugan, Bending of a cosserat elastic bar of square cross section: Theory and experiment, J. Appl. Mech., vol. 82, no. 9, 091002 (8 pages), 2015.
  • Z. Rueger, D. Li, and R. Lakes, Observation of cosserat elastic effects in a tetragonal negative poisson’s ratio lattice, Phys. Status Solidi B, vol. 254, no. 12, pp. 1600840, 2017. DOI: 10.1002/pssb.201600840.
  • M. Dunn and M. Wheel, Size effect anomalies in the behaviour of loaded 3d mechanical metamaterials, Philos. Mag., vol. 100, no. 2, pp. 139–156, 2020. DOI: 10.1080/14786435.2019.1671996.
  • A.J. Beveridge, M. Wheel, and D. Nash, The micropolar elastic behaviour of model macroscopically heterogeneous materials, Int. J. Solids Struct., vol. 50, no. 1, pp. 246–255, 2013. DOI: 10.1016/j.ijsolstr.2012.09.023.
  • F.-Y. Huang, B.-H. Yan, J.-L. Yan, and D.-U. Yang, Bending analysis of micropolar elastic beam using a 3-d finite element method, Int. J. Eng. Sci., vol. 38, no. 3, pp. 275–286, 2000. DOI: 10.1016/S0020-7225(99)00041-5.
  • B. Hassanati and M. Wheel, Size effects on free vibration of heterogeneous beams, MATEC Web Conf., vol. 148, pp. 07003, 2018. DOI: 10.1051/matecconf/201814807003.
  • B. Chiu and J.D. Lee, On the plane problem in micropolar elasticity, Int. J. Eng. Sci., vol. 11, no. 9, pp. 997–1012, 1973. DOI: 10.1016/0020-7225(73)90013-X.
  • MATLAB, version 9.8.0 (R2020a), The MathWorks Inc., Natick, MA, 2020.
  • T. Vodenitcharova and L. Zhang, Effective wall thickness of a single-walled carbon nanotube, Phys. Rev. B, vol. 68, no. 16, pp. 165401, 2003. DOI: 10.1103/PhysRevB.68.165401.
  • H.W. Kuhn and A.W. Tucker, Nonlinear programming. In: Giorgio Giorgi, Tinne Hoff Kjeldsen (Eds.), Traces and Emergence of Nonlinear Programming, Springer, Berlin/Heidelberg, Germany, pp. 247–258, 2014.
  • M. Akbarzadeh Khorshidi and D. Soltani, Nanostructure-dependent dispersion of carbon nanostructures: New insights into the modified couple stress theory. Math. Methods Appl. Sci., pp. 1–17, 2020. DOI: 10.1002/mma.6748.
  • W. Duan, C.M. Wang, and Y. Zhang, Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics, J. Appl. Phys., vol. 101, no. 2, pp. 024305, 2007. DOI: 10.1063/1.2423140.
  • H. Askes and E.C. Aifantis, Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results, Int. J. Solids Struct., vol. 48, no. 13, pp. 1962–1990, 2011. DOI: 10.1016/j.ijsolstr.2011.03.006.
  • M. Arroyo and T. Belytschko, Finite crystal elasticity of carbon nanotubes based on the exponential cauchy-born rule, Phys. Rev. B, vol. 69, no. 11, pp. 115415, 2004. DOI: 10.1103/PhysRevB.69.115415.
  • Y.-G. Hu, K.M. Liew, and Q. Wang, Nonlocal elastic beam models for flexural wave propagation in double-walled carbon nanotubes, J. Appl. Phys., vol. 106, no. 4, pp. 044301, 2009. DOI: 10.1063/1.3197857.
  • B.G. Demczyk et al., Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, Mater. Sci. Eng. A, vol. 334, no. 1–2, pp. 173–178, 2002. DOI: 10.1016/S0921-5093(01)01807-X.
  • J.-P. Salvetat et al., Elastic and shear moduli of single-walled carbon nanotube ropes, Phys. Rev. Lett., vol. 82, no. 5, pp. 944–947, 1999. DOI: 10.1103/PhysRevLett.82.944.
  • M.J. Treacy, T.W. Ebbesen, and J.M. Gibson, Exceptionally high young’s modulus observed for individual carbon nanotubes, Nature, vol. 381, no. 6584, pp. 678–680, 1996. DOI: 10.1038/381678a0.
  • A. Krishnan, E. Dujardin, T. Ebbesen, P. Yianilos, and M. Treacy, Young’s modulus of single-walled nanotubes, Phys. Rev. B, vol. 58, no. 20, pp. 14013–14019, 1998. DOI: 10.1103/PhysRevB.58.14013.
  • E.W. Wong, P.E. Sheehan, and C.M. Lieber, Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes, Science, vol. 277, no. 5334, pp. 1971–1975, 1997. DOI: 10.1126/science.277.5334.1971.
  • B. WenXing, Z. ChangChun, and C. WanZhao, Simulation of young’s modulus of single-walled carbon nanotubes by molecular dynamics, Physica B Condens. Matter., vol. 352, no. 1–4, pp. 156–163, 2004. DOI: 10.1016/j.physb.2004.07.005.
  • N. Sakharova, A. Pereira, J. Antunes, C. Brett, and J. Fernandes, Mechanical characterization of single-walled carbon nanotubes: Numerical simulation study, Compos. B Eng., vol. 75, pp. 73–85, 2015. DOI: 10.1016/j.compositesb.2015.01.014.
  • A.A. Farajian, B.I. Yakobson, H. Mizuseki, and Y. Kawazoe, Electronic transport through bent carbon nanotubes: Nanoelectromechanical sensors and switches, Phys. Rev. B, vol. 67, no. 20, pp. 205423, 2003. DOI: 10.1103/PhysRevB.67.205423.
  • P. Liu, Y. Zhang, C. Lu, and K. Lam, Tensile and bending properties of double-walled carbon nanotubes, J. Phys. D: Appl. Phys., vol. 37, no. 17, pp. 2358–2363, 2004. DOI: 10.1088/0022-3727/37/17/003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.