137
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Performance analysis of bimodular simply supported beams based on the deformation decomposition method

, & ORCID Icon
Pages 437-448 | Received 03 Jun 2021, Accepted 08 Dec 2021, Published online: 27 Dec 2021

References

  • A. Bhushan and S. K. Panda, Experimental and computational correlation of fracture parameters KIc, JIc, and GIc for unimodular and bimodular graphite components, J. Nucl. Mater., vol. 503, pp. 205–225, 2018. DOI: 10.1016/j.jnucmat.2018.03.012.
  • R. Lorenzo, L. Mimendi, H. T. Li, and D. Yang, Bimodulus bending model for bamboo poles, Constr. Build. Mater., vol. 262, p. 120876, 2020. DOI: 10.1016/j.conbuildmat.2020.120876.
  • W. J. Yao, Y. T. Zhou, and J. W. Ma, Control conditions for the second-class crack of concrete based on different modulus theory, AMM vol. 152–154, pp. 599–602, 2012. DOI: 10.4028/www.scientific.net/AMM.152-154.599.
  • Y. D. Boon, S. C. Joshi, and L. S. Ong, Bimodulus-plastic model for pre-failure analysis of fiber reinforced polymer composites, Mech. Mater., vol. 134, pp. 18–29, 2019. DOI: 10.1016/j.mechmat.2019.04.003.
  • Ł. Smakosz, I. Kreja, and Z. Pozorski, Flexural behavior of composite structural insulated panels with magnesium oxide board facings, Arch. Civ. Mech. Eng., vol. 20, no. 4, pp. 105, 2020. DOI: 10.1007/s43452-020-00109-y.
  • C. W. Bert, Models for fibrous composites with different properties in tension and compression, J. Eng. Mater. Technol., vol. 99, no. 4, pp. 344–349, 1977. DOI: 10.1115/1.3443550.
  • J. N. Reddy and W. C. Chao, Finite-element analysis of laminated bimodulus composite-material plates, Comput. Struct., vol. 12, no. 2, pp. 245–251, 1980. DOI: 10.1016/0045-7949(80)90011-5.
  • C. W. Bert and F. Gordaninejad, Transverse shear effects in bimodular composite laminates, J. Compos. Mater., vol. 17, no. 4, pp. 282–298, 1983. DOI: 10.1177/002199838301700401.
  • R. Zinno and F. Greco, Damage evolution in bimodular laminated composites under cyclic loading, Compos. Struct., vol. 53, no. 4, pp. 381–402, 2001. DOI: 10.1016/S0263-8223(01)00048-4.
  • K. Khan, B. P. Patel, and Y. Nath, Vibration analysis of bimodulus laminated cylindrical panels, J. Sound Vibr., vol. 321, no. 1–2, pp. 166–183, 2009. DOI: 10.1016/j.jsv.2008.09.017.
  • K. Khan, B. P. Patel, and Y. Nath, Dynamic characteristics of bimodular laminated panels using an efficient layerwise theory, Compos. Struct., vol. 132, pp. 759–771, 2015. DOI: 10.1016/j.compstruct.2015.05.064.
  • S. A. Ambartsumyan, Different Modulus Theory of Elasticity, Moscow Science Publications, Moscow, 1982.
  • W. J. Yao, J. W. Ma, and B. L. Hu, Stability analysis of bimodular pin-ended slender rod, Struct. Eng. Mech., vol. 40, no. 4, pp. 563–581, 2011. DOI: 10.12989/sem.2011.40.4.563.
  • X. T. He, X. J. Hu, J. Y. Sun, and Z. L. Zheng, An analytical solution of bending thin plates with different moduli in tension and compression, Struct. Eng. Mech., vol. 36, no. 3, pp. 363–380, 2010. DOI: 10.12989/sem.2010.36.3.363.
  • J. W. Ma, T. C. Fang, and W. J. Yao, Nonlinear large deflection buckling analysis of compression rod with different moduli, Mech. Adv. Mater. Struc., vol. 26, no. 6, pp. 539–551, 2019. DOI: 10.1080/15376494.2017.1410898.
  • Q. Yang, B. L. Zheng, K. Zhang, and J. Li, Elastic solutions of a functionally graded cantilever beam with different modulus in tension and compression under bending loads, Appl. Math. Model., vol. 38, no. 4, pp. 1403–1416, 2014. DOI: 10.1016/j.apm.2013.08.021.
  • X. T. He, X. Li, W. M. Li, and J. Y. Sun, Bending analysis of functionally graded curved beams with different properties in tension and compression, Arch. Appl. Mech., vol. 89, no. 9, pp. 1973–1994, 2019. DOI: 10.1007/s00419-019-01555-8.
  • X. T. He, W. M. Li, J. Y. Sun, and Z. X. Wang, An elasticity solution of functionally graded beams with different moduli in tension and compression, Mech. Adv. Mater. Struc., vol. 25, no. 2, pp. 143–154, 2018. DOI: 10.1080/15376494.2016.1255808.
  • S. Shah, S. K. Panda, and D. Khan, Analytical solution for a flexural bimodulus beam, Emerg. Mater. Res., vol. 6, no. 2, pp. 396–403, 2017. DOI: 10.1680/jemmr.15.00081.
  • Z. L. Du and X. Guo, Variational principles and the related bounding theorems for bi-modulus materials, J. Mech. Phys. Solids, vol. 73, pp. 183–211, 2014. DOI: 10.1016/j.jmps.2014.08.006.
  • T. Huang, Q. X. Pan, J. Jin, J. L. Zheng, and P. H. Wen, Continuous constitutive model for bimodulus materials with meshless approach, Appl. Math. Model., vol. 66, pp. 41–58, 2019. DOI: 10.1016/j.apm.2018.09.004.
  • Q. X. Pan, J. L. Zheng, and P. H. Wen, Efficient algorithm for 3D bimodulus structures, Acta Mech. Sin., vol. 36, no. 1, pp. 143–159, 2020. DOI: 10.1007/s10409-019-00909-3.
  • A. S. Khan, and S. Yuan, A three-dimensional finite element program for brittle bimodular rock-like materials, Int. J. Numer. Anal. Methods Geomech., vol. 12, no. 6, pp. 599–609, 1988. DOI: 10.1002/nag.1610120603.
  • W. H. Xie, Z. J. Peng, S. H. Meng, C. H. Xu, F. J. Yi, and S. Y. Du, GWFMM model for bi-modulus orthotropic materials: Application to mechanical analysis of 4D-C/C composites, Compos. Struct., vol. 150, pp. 132–138, 2016. DOI: 10.1016/j.compstruct.2016.04.041.
  • L. Du, F. C. Li, and Q. F. Liu, A study on determination of application limits of bimodulus calculation using spherical stress tensor method, J. Reinf. Plast. Comp., vol. 36, no. 7, pp. 479–490, 2017. DOI: 10.1177/0731684416684210.
  • L. Du, F. C. Li, X. L. Guo, and X. S. Ma, Finite element analysis of ceramic beam with different modulus based on stress balls tensor method, Chinese J. Prop. Technol., vol. 36, no. 8, pp. 1229–1235, 2015. DOI: 10.13675/j.cnki.tjjs.2015.08.016.
  • C. Robert, Concepts and Applications of Finite Element Analysis, John Wiley&Sons Inc, New York, 1989.
  • C. H. Zhang and S. V. Hoa, A systematic and quantitative method to determine the optimal assumed stress fields for hybrid stress finite elements, Finite Elem. Anal. Des., vol. 80, pp. 41–62, 2014. DOI: 10.1016/j.finel.2013.10.008.
  • D. W. Wang, N. Chen, and P. X. Sun, Coupling characteristics of medium to highrise shear wall with openings based on orthogonal decomposition method, Chin. J. Build. Struct., vol. 37, no. 2, pp. 41–46, 2016. DOI: 10.14006/j.jzjgxb.2016.02.006.
  • J. Y. Sun, H. Q. Zhu, S. H. Qin, D. L. Yang, and X. T. He, A review on the research of mechanical problems with different moduli in tension and compression, J. Mech. Sci. Technol., vol. 24, no. 9, pp. 1845–1854, 2010. DOI: 10.1007/s12206-010-0601-3.
  • E. Carrera, A. G. de Miguel, and A. Pagani, Extension of MITC to higher-order beam models and shear locking analysis for compact, thin-walled, and composite structures, Int. J. Numer. Methods Eng., vol. 112, no. 13, pp. 1889–1908, 2017. DOI: 10.1002/nme.5588.
  • E. Carrera and A. Pagani, Evaluation of the accuracy of classical beam FE models via locking-free hierarchically refined elements, Int. J. Mech. Sci., vol. 100, pp. 169–179, 2015. DOI: 10.1016/j.ijmecsci.2015.06.021.
  • P. Zhang, J. M. Ma, M. L. Duan, Y. Yuan, and J. J. Wang, A high-precision curvature constrained Bernoulli–Euler planar beam element for geometrically nonlinear analysis, Appl. Math. Comput., vol. 397, p. 125986, 2021. DOI: 10.1016/j.amc.2021.125986.
  • M. Jirásek, E. L. M. Ribolla, and M. Horák, Efficient finite difference formulation of a geometrically nonlinear beam element, Int. J. Numer. Meth. Eng., vol. 122, no. 23, pp. 7013–7053, 2021. DOI: 10.1002/nme.6820.
  • M. P. Wang, B. Li, X. C. Liu, and R. P. Wang, Experimental research on shear of reinforced concrete short beams with web openings, Chin. J. Build. Struct., vol. 25, no. 3, pp. 80–84, 2004. DOI: 10.14006/j.jzjgxb.2004.03.013.
  • G. Michaltsos, D. Sophianopoulos, and A. N. Kounadis, The effect of a moving mass and other parameters on the dynamic response of a simply supported beam, J. Sound Vib., vol. 191, no. 3, pp. 357–362, 1996. DOI: 10.1006/jsvi.1996.0127.
  • H. S. Chen, Q. L. Zhao, Y. Gu, Y. J. Yin, and D. N. Fang, Shear lag in fiber-reinforced plastics composite simply supported ii-beams, Mech. Adv. Mater. Struc., vol. 20, no. 7, pp. 564–570, 2013. DOI: 10.1080/15376494.2011.643277.
  • C. Xu, M. L. Nehdi, Z. Wu, and J. Li, Effect of rebar self-stress on behavior of autoclaved aerated simply supported R/C thin beams subject to uniform transverse dead load, Eng. Struct., vol. 238, p. 112242, 2021. DOI: 10.1016/j.engstruct.2021.112242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.