518
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Process modeling and characterization of thermoset composites for residual stress prediction

, , , &
Pages 486-497 | Received 07 Dec 2021, Accepted 08 Dec 2021, Published online: 20 Dec 2021

References

  • J. Galos, Thin-ply composite laminates: A review, Compos. Struct., vol. 236, p. 111920, 2020. DOI: 10.1016/j.compstruct.2020.111920.
  • S. Shah and Maiaru M. Microscale analysis of virtually cured polymer matrix composites accounting for uncertainty in matrix properties during manufacturing, Proceedings of the American Society for Composites—Thirty-Third Technical Conference; Washington, USA, 2018. DOI: 10.12783/asc33/25958.
  • M. Maiaru, Effect of uncertainty in matrix fracture properties on the transverse strength of fiber reinforced polymer matrix composites, 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; American Institute of Aeronautics and Astronautics, 2018. DOI: 10.2514/6.2018-1901.
  • M. Maiarù, R.J. D’Mello, and A.M. Waas, Characterization of intralaminar strengths of virtually cured polymer matrix composites, Compos. B: Eng., vol. 149, pp. 285–295, 2018. DOI: 10.1016/j.compositesb.2018.02.018.
  • R.J. D’Mello, M. Maiarù, and A.M. Waas, Virtual manufacturing of composite aerostructures, Aeronaut. J., vol. 120, no. 1223, pp. 61–81, 2016. DOI: 10.1017/aer.2015.19.
  • R.J. D’Mello, M. Maiarù, and A.M. Waas, Effect of the curing process on the transverse tensile strength of fiber-reinforced polymer matrix lamina using micromechanics computations, Integr. Mater. Manuf. Innov., vol. 4, no. 1, pp. 119–136, 2015. DOI: 10.1186/s40192-015-0035-y.
  • T.S. Mesogitis, A.A. Skordos, and A.C. Long, Uncertainty in the manufacturing of fibrous thermosetting composites: A review, Compos. A: Appl. Sci. Manuf., vol. 57, pp. 67–75, 2014. DOI: 10.1016/j.compositesa.2013.11.004.
  • S.P. Shah and M. Maiarù, Effect of manufacturing on the transverse response of polymer matrix composites, Polymers, vol. 13, no. 15, p. 2491, 2021. DOI: 10.3390/polym13152491.
  • I. Baran, K. Cinar, N. Ersoy, R. Akkerman, and J.H. Hattel, A review on the mechanical modeling of composite manufacturing processes, Arch. Computat. Methods Eng., vol. 24, no. 2, pp. 365–395, 2017. DOI: 10.1007/s11831-016-9167-2.
  • F. Danzi, D. Fanteria, E. Panettieri, and M.C. Mancino, A numerical micro-mechanical study on damage induced by the curing process in carbon/epoxy unidirectional material, Compos. Struct., vol. 210, pp. 755–766, 2019. DOI: 10.1016/j.compstruct.2018.11.059.
  • X. Hui, Y. Xu, J. Wang, and W. Zhang, Microscale viscoplastic analysis of unidirectional CFRP composites under the influence of curing process, Compos. Struct., vol. 266, p. 113786, 2021. DOI: 10.1016/j.compstruct.2021.113786.
  • X. Hui, Y. Xu, and W. Zhang, An integrated modeling of the curing process and transverse tensile damage of unidirectional CFRP composites, Compos. Struct., vol. 263, p. 113681, 2021. DOI: 10.1016/j.compstruct.2021.113681.
  • C. He, et al., Multiscale elasto-plastic damage model for the nonlinear behavior of 3D braided composites, Compos. Sci. Technol., vol. 171, pp. 21–33, 2019. DOI: 10.1016/j.compscitech.2018.12.003.
  • L. Yang, Y. Yan, J. Ma, and B. Liu, Effects of inter-fiber spacing and thermal residual stress on transverse failure of fiber-reinforced polymer–matrix composites, Comput. Mater. Sci., vol. 68, pp. 255–262, 2013. DOI: 10.1016/j.commatsci.2012.09.027.
  • J. LLorca, et al., Multiscale modeling of composite materials: A roadmap towards virtual testing, Adv. Mater., vol. 23, no. 44, pp. 5130–5147, 2011. DOI: 10.1002/adma.201101683.
  • L.G. Zhao, N.A. Warrior, and A.C. Long, A micromechanical study of residual stress and its effect on transverse failure in polymer–matrix composites, Int. J. Solids Struct., vol. 43, no. 18–19, pp. 5449–5467, 2006. DOI: 10.1016/j.ijsolstr.2005.08.012.
  • M.R. Kamal and S. Sourour, Kinetics and thermal characterization of thermoset cure, Polym. Eng. Sci., vol. 13, no. 1, pp. 59–64, 1973. DOI: 10.1002/pen.760130110.
  • A.R. Plepys and R.J. Farris, Evolution of residual stresses in three-dimensionally constrained epoxy resins, Polymer, vol. 31, no. 10, pp. 1932–1936, 1990. DOI: 10.1016/0032-3861(90)90019-U.
  • A. Plepys, M.S. Vratsanos, and R.J. Farris, Determination of residual stresses using incremental linear elasticity, Compos. Struct., vol. 27, no. 1–2, pp. 51–56, 1994. DOI: 10.1016/0263-8223(94)90066-3.
  • T.A. Bogetti, W. John, and J. Gillespie, Process-induced stress and deformation in thick-section thermoset composite laminates, J. Compos. Mater., vol. 26, no. 5, pp. 626–660, 1992. DOI: 10.1177/002199839202600502.
  • J.T. Zhang, M. Zhang, S.X. Li, M.J. Pavier, and D.J. Smith, Residual stresses created during curing of a polymer matrix composite using a viscoelastic model, Compos. Sci. Technol., vol. 130, pp. 20–27, 2016. DOI: 10.1016/j.compscitech.2016.05.002.
  • A. Ding, S. Li, J. Wang, and L. Zu, A three-dimensional thermo-viscoelastic analysis of process-induced residual stress in composite laminates, Compos. Struct., vol. 129, pp. 60–69, 2015. DOI: 10.1016/j.compstruct.2015.03.034.
  • D.B. Adolf and R.S. Chambers, A thermodynamically consistent, nonlinear viscoelastic approach for modeling thermosets during cure, J. Rheol., vol. 51, no. 1, pp. 23–50, 2007. DOI: 10.1122/1.2360670.
  • J. Lange, S. Toll, J.-A.E. Månson, and A. Hult, Residual stress build-up in thermoset films cured below their ultimate glass transition temperature, Polymer, vol. 38, no. 4, pp. 809–815, 1997. DOI: 10.1016/S0032-3861(96)00584-8.
  • S.R. White and H.T. Hahn, Process modeling of composite materials: Residual stress development during cure. Part I. Model formulation, J. Compos. Mater., vol. 26, no. 16, pp. 2402–2422, 1992. DOI: 10.1177/002199839202601604.
  • C. Heinrich, M. Aldridge, A.S. Wineman, J. Kieffer, A.M. Waas, and K.W. Shahwan, Generation of heat and stress during the cure of polymers used in fiber composites, Int. J. Eng. Sci., vol. 53, pp. 85–111, 2012. DOI: 10.1016/j.ijengsci.2011.12.004.
  • C. Heinrich, M. Aldridge, A.S. Wineman, J. Kieffer, A.M. Waas, and K.W. Shahwan, The role of curing stresses in subsequent response, damage and failure of textile polymer composites, J. Mech. Phys. Solids ., vol. 61, no. 5, pp. 1241–1264, 2013. DOI: 10.1016/j.jmps.2012.12.005.
  • R.J. D’Mello and A.M. Waas, Virtual curing of textile polymer matrix composites, Compos. Struct., vol. 178, pp. 455–466, 2017. DOI: 10.1016/j.compstruct.2017.05.045.
  • E. Ruiz and F. Trochu, Thermomechanical properties during cure of glass-polyester RTM composites: Elastic and viscoelastic modeling, J. Compos. Mater., vol. 39, no. 10, pp. 881–916, 2005. DOI: 10.1177/0021998305048732.
  • Y. Nawab, P. Casari, N. Boyard, and F. Jacquemin, Characterization of the cure shrinkage, reaction kinetics, bulk modulus and thermal conductivity of thermoset resin from a single experiment, J. Mater. Sci., vol. 48, no. 6, pp. 2394–2403, 2013. DOI: 10.1007/s10853-012-7026-6.
  • Y. Abou Msallem, F. Jacquemin, N. Boyard, A. Poitou, D. Delaunay, and S. Chatel, Material characterization and residual stresses simulation during the manufacturing process of epoxy matrix composites, Compos. A: Appl. Sci. Manuf., vol. 41, no. 1, pp. 108–115, 2010. DOI: 10.1016/j.compositesa.2009.09.025.
  • C. Billotte, F.M. Bernard, and E. Ruiz, Chemical shrinkage and thermomechanical characterization of an epoxy resin during cure by a novel in situ measurement method, Eur. Polym. J., vol. 49, no. 11, pp. 3548–3560, 2013. DOI: 10.1016/j.eurpolymj.2013.07.013.
  • A.S. Ganapathi, S.C. Joshi, and Z. Chen, Influence of cure kinetic, rheological and thermo-mechanical behavior on micro-level curing strain of an epoxy prepreg, J. Therm. Anal. Calorim., vol. 124, no. 1, pp. 305–316, 2016. DOI: 10.1007/s10973-015-5090-2.
  • L. Khoun, T. Centea, and P. Hubert, Characterization methodology of thermoset resins for the processing of composite materials—case study: CYCOM 890RTM epoxy resin, J. Compos. Mater., vol. 44, no. 11, pp. 1397–1415, 2010. DOI: 10.1177/0021998309353960.
  • J. Puentes, J.L. Colon Quintana, A. Chaloupka, N. Rudolph, and T.A. Osswald, Moduli development of epoxy adhesives during cure, Polym. Test., vol. 77, p. 105863, 2019. DOI: 10.1016/j.polymertesting.2019.04.010.
  • M. Sadeghinia, K.M.B. Jansen, and L.J. Ernst, Characterization of the viscoelastic properties of an epoxy molding compound during cure, Microelectron. Reliab., vol. 52, no. 8, pp. 1711–1718, 2012. DOI: 10.1016/j.microrel.2012.03.025.
  • A.T. DiBenedetto, Prediction of the glass transition temperature of polymers: A model based on the principle of corresponding states, J. Polym. Sci. B Polym. Phys., vol. 25, no. 9, pp. 1949–1969, 1987. DOI: 10.1002/polb.1987.090250914.
  • G.M. Odegard and A. Bandyopadhyay, Physical aging of epoxy polymers and their composites, J. Polym. Sci. B Polym. Phys., vol. 49, no. 24, pp. 1695–1716, 2011. DOI: 10.1002/polb.22384.
  • D. J. O'Brien and ScottR. White, Cure kinetics, gelation, and glass transition of a bisphenol f epoxide, Polym. Eng. Sci., vol. 43, no. 4, pp. 863–874, 2003. DOI: 10.1002/pen.10071.
  • L. Khoun and P. Hubert, Cure shrinkage characterization of an epoxy resin system by two in situ measurement methods, Polym. Compos., vol. 31, no. 9, pp. 1603–1610, 2010. DOI: 10.1002/pc.20949.
  • K.F. Schoch, P.A. Panackal, and P.P. Frank, Real-time measurement of resin shrinkage during cure, Thermochim. Acta, vol. 417, no. 1, pp. 115–118, 2004. DOI: 10.1016/j.tca.2003.12.027.
  • M. Zarrelli, A.A. Skordos, and I.K. Partridge, Investigation of cure induced shrinkage in unreinforced epoxy resin, Plast. Rubber Compos., vol. 31, no. 9, pp. 377–384, 2002. DOI: 10.1179/146580102225006350.
  • C. Li, K. Potter, M.R. Wisnom, and G. Stringer, In-situ measurement of chemical shrinkage of my750 epoxy resin by a novel gravimetric method, Compos. Sci. Technol., vol. 64, no. 1, pp. 55–64, 2004. DOI: 10.1016/S0266-3538(03)00199-4.
  • H. Yu, S.G. Mhaisalkar, and E.H. Wong, Cure shrinkage measurement of nonconductive adhesives by means of a thermomechanical analyzer, J Electr. Mater., vol. 34, no. 8, pp. 1177–1182, 2005. DOI: 10.1007/s11664-005-0248-5.
  • ASTM Standard E831-19, 2019, Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis, ASTM International, Conshohocken, PA, 2019. DOI: 10.1520/E0831-19.
  • ASTM Standard D7028-07e1, 2015, Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA), ASTM International, Conshohocken, PA, 2015. DOI: 10.1520/D7028-07E01.
  • OriginLabs Corporation. Origin (Pro), Version 2020b, OriginLab Corporation, Northampton, MA, 2020.
  • Simulia Corp, Dassault Systemes. Abaqus 6.16 Documentation, Simulia Corp, Providence, RI, 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.