260
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Applicability of existing models for the strength development of 3D-printed thixotropic concretes during hardening

ORCID Icon, ORCID Icon & ORCID Icon
Pages 510-519 | Received 13 Oct 2021, Accepted 09 Dec 2021, Published online: 31 Dec 2021

References

  • J.J. Beaman, J.W. Barlow, D.L. Bourell, R.H. Crawford, H.L. Marcus, and K.P. McAlea, Solid Freeform Fabrication: A New Direction in Manufacturing.Springer US, Boston, MA, 1997. Available from Doi: 10.1007/978-1-4615-6327-3.
  • R.A. Buswell, R.C. Soar, A.G.F. Gibb, and A. Thorpe, Freeform construction: mega-scale rapid manufacturing for construction, Autom. Constr., vol. 16, no. 2, pp. 224–231, 2007. DOI: 10.1016/j.autcon.2006.05.002.
  • B. Khoshnevis, Automated construction by contour crafting—related robotics and information technologies, Autom. Constr., vol. 13, no. 1, pp. 5–19, 2004. Available from https://linkinghub.elsevier.com/retrieve/pii/S0926580503000736. DOI: 10.1016/j.autcon.2003.08.012.
  • B. Khoshnevis, D. Hwang, K.-T. Yao, and Z. Yeh, Mega-scale fabrication by contour crafting, IJISE, vol. 1, no. 3, pp. 301, 2006. Available from http://www.inderscience.com/link.php?id=9791. DOI: 10.1504/IJISE.2006.009791.
  • J. Pegna, Exploratory investigation of solid freeform construction, Autom. Constr., vol. 5, no. 5, pp. 427–437, 1997. DOI: 10.1016/S0926-5805(96)00166-5.
  • R.A. Buswell, A. Thorpe, R.C. Soar, and A.G.F. Gibb, Design data issues for the control of mega-scale rapid manufacturing, 24th W78 Conference “Bringing ITC knowledge to work”, 2007. Available from https://dspace.lboro.ac.uk/2134/26938
  • S. Lim, R.A. Buswell, T.T. Le, S.A. Austin, A.G.F. Gibb, and T. Thorpe, Developments in construction-scale additive manufacturing processes, Autom. Constr., vol. 21, pp. 262–268, 2012. Available from https://linkinghub.elsevier.com/retrieve/pii/S0926580511001221. DOI: 10.1016/j.autcon.2011.06.010.
  • C. Gosselin, R. Duballet, P. Roux, N. Gaudillière, J. Dirrenberger, and P. Morel, Large-scale 3D printing of ultra-high performance concrete – a new processing route for architects and builders, Mater. Design, vol. 100, pp. 102–109, 2016. Available from https://linkinghub.elsevier.com/retrieve/pii/S0264127516303811. DOI: 10.1016/j.matdes.2016.03.097.
  • T.T. Le, S.A. Austin, S. Lim, R.A. Buswell, A.G.F. Gibb, and T. Thorpe, Mix design and fresh properties for high-performance printing concrete, Mater. Struct., vol. 45, no. 8, pp. 1221–1232, 2012. Available from Doi: 10.1617/s11527-012-9828-z.
  • T.A.M. Salet, Z.Y. Ahmed, F.P. Bos, and H.L.M. Laagland, Design of a 3D printed concrete bridge by testing, Virt Phys Protot., vol. 13, no. 3, pp. 222–236, 2018. Doi: 10.1080/17452759.2018.1476064.
  • G. Cesaretti, E. Dini, X. De Kestelier, V. Colla, and L. Pambaguian, Building components for an outpost on the lunar soil by means of a novel 3D printing technology, Acta Astronaut. (UK)., vol. 93, pp. 430–450, 2014. Available from https://linkinghub.elsevier.com/retrieve/pii/S0094576513002889. DOI: 10.1016/j.actaastro.2013.07.034.
  • T. Wangler, N. Roussel, F.P. Bos, T.A.M. Salet, and R.J. Flatt, Digital Concrete: A Review, Cem. Concr. Res., vol. 123, pp. 105780, 2019. https://linkinghub.elsevier.com/retrieve/pii/S0008884619303680. DOI: 10.1016/j.cemconres.2019.105780.
  • G. De Schutter, K. Lesage, V. Mechtcherine, V.N. Nerella, G. Habert, and I. Agusti-Juan, Vision of 3D printing with concrete — Technical, economic and environmental potentials, Cem. Concr. Res., vol. 112, pp. 25–36, 2018. https://linkinghub.elsevier.com/retrieve/pii/S000888461731219X. DOI: 10.1016/j.cemconres.2018.06.001.
  • F. Bos, R. Wolfs, Z. Ahmed, and T. Salet, Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing, Virt. Phys. Prototy., vol. 11, no. 3, pp. 209–225, 2016. Available from Doi: 10.1080/17452759.2016.1209867.
  • R. Duballet, O. Baverel, and J. Dirrenberger, Classification of building systems for concrete 3D printing, Autom. Constr., vol. 83, no. August, pp. 247–258, 2017. Available from https://linkinghub.elsevier.com/retrieve/pii/S0926580516302977. DOI: 10.1016/j.autcon.2017.08.018.
  • N. Labonnote, A. Rønnquist, B. Manum, and P. Rüther, Additive construction: State-of-the-art, challenges and opportunities, Autom. Constr., vol. 72, pp. 347–366, 2016. Available from. DOI: 10.1016/j.autcon.2016.08.026.
  • T.T. Le, et al., Hardened properties of high-performance printing concrete, Cem. Concr. Res., vol. 42, no. 3, pp. 558–566, 2012. Available from https://linkinghub.elsevier.com/retrieve/pii/S0008884611003255. DOI: 10.1016/j.cemconres.2011.12.003.
  • B. Panda, Y.W.D. Tay, S.C. Paul, and M.J. Tan, Current challenges and future potential of 3D concrete printing, Materialwiss. Werkstofftech., vol. 49, no. 5, pp. 666–673, 2018. DOI: 10.1002/mawe.201700279.
  • T.A.M. Salet, F.P. Bos, R.J.M. Wolfs, and Z.Y. Ahmed, 3D Concrete printing – a structural engineering perspective. High Tech Concrete: Where Technology and Engineering Meeting, Springer International Publishing, Cham, 2018. xliii–xlvii. DOI: 10.1007/978-3-319-59471-2.
  • J. Buchli, et al., Digital in situ fabrication – challenges and opportunities for robotic in situ fabrication in architecture, construction, and beyond, Cem. Concr. Res., vol. 112, pp. 66–75, 2018. Available from https://linkinghub.elsevier.com/retrieve/pii/S0008884618300206. DOI: 10.1016/j.cemconres.2018.05.013.
  • V. Mechtcherine, V.N. Nerella, F. Will, M. Näther, J. Otto, and M. Krause, Large-scale digital concrete construction – CONPrint3D concept for on-site, monolithic 3D-printing, Autom. Constr., vol. 107, no. August, pp. 102933, 2019. DOI: 10.1016/j.autcon.2019.102933.
  • B. Zareiyan, and B. Khoshnevis, Interlayer adhesion and strength of structures in contour crafting – effects of aggregate size, extrusion rate, and layer thickness, Autom. Constr., vol. 81, pp. 112–121, 2017. Available from https://linkinghub.elsevier.com/retrieve/pii/S092658051730523X. DOI: 10.1016/j.autcon.2017.06.013.
  • T. Wangler, et al., Digital Concrete: Opportunities and Challenges, RILEM Tech. Lett., vol. 1, pp. 67, 2016. https://letters.rilem.net/index.php/rilem/article/view/16. DOI: 10.21809/rilemtechlett.2016.16.
  • B. Klemczak, M. Batog, and M. Pilch, Assessment of concrete strength development models with regard to concretes with low clinker cements, Arch Civil Mech Eng. vol. 16, no. 2, pp. 235–247, 2016. Available from https://linkinghub.elsevier.com/retrieve/pii/S1644966515000977. DOI: 10.1016/j.acme.2015.10.008.
  • C.C.M. Doomen, The Effect of Layered Manufacturing on the Strength Properties of Printable Concrete, Eindhoven University of Technology, 2016.
  • S. Lim, et al., Development of a viable concrete printing process, In: 28th International Symposium on Automation and Robotics in Construction (ISARC 2011), 2011. p. 665–670. DOI: 10.22260/isarc2011/0124.
  • R.J.M. Wolfs, F.P. Bos, and T.A.M. Salet, Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion, Cem. Concr. Res., vol. 119, no. March, pp. 132–140, 2019. https://linkinghub.elsevier.com/retrieve/pii/S0008884618310482. DOI: 10.1016/j.cemconres.2019.02.017.
  • AENOR. UNE-EN 1992-1-1 2013 Eurocódigo 2: Proyecto de estructuras de hormigón, Parte 1-1: Reglas generales y reglas para edificación., 2013.
  • American Concrete Institute. ACI 209R-92. Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures, 1997.
  • fib. CEB-FIP MODEL CODE 1990. 1993. Available from Doi: 10.1680/ceb-fipmc1990.35430.
  • fib. Fib Model Code for Concrete Structures 2010. Wiley-VCH Verlag GmbH & Co. KGaA, Berlin, Germany. Available from 2013. DOI: 10.1002/9783433604090.
  • Fomento Ministerio de, EHE-08 - Instrucción de Hormigón Estructural, 2008.
  • H. Yokota, K. Rokugo, and N. Sakata, (JSCE-2008) Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC), 2008. DOI: 10.1016/j.dci.2010.01.003.
  • K. Yu, W. McGee, T.Y. Ng, H. Zhu, and V.C. Li, 3D-printable engineered cementitious composites (3DP-ECC): Fresh and hardened properties, Cem. Concr. Res., vol. 143, pp. 106388, 2021. https://linkinghub.elsevier.com/retrieve/pii/S0008884621000375. DOI: 10.1016/j.cemconres.2021.106388.
  • T. Ding, J. Xiao, S. Zou, and X. Zhou, Anisotropic behavior in bending of 3D printed concrete reinforced with fibers, Compos. Struct., vol. 254, pp. 112808, 2020. Available from https://linkinghub.elsevier.com/retrieve/pii/S0263822320327343. DOI: 10.1016/j.compstruct.2020.112808.
  • Z. Geng, et al., Layer-interface properties in 3D printed concrete: Dual hierarchical structure and micromechanical characterization, Cem. Concr. Res., vol. 138, pp. 106220, 2020. Available from https://linkinghub.elsevier.com/retrieve/pii/S0008884620301794. DOI: 10.1016/j.cemconres.2020.106220.
  • H. Kloft, et al., Influence of process parameters on the interlayer bond strength of concrete elements additive manufactured by Shotcrete 3D Printing (SC3DP), Cem. Concr. Res., vol. 134, pp. 106078, 2020. Available from https://linkinghub.elsevier.com/retrieve/pii/S0008884619317053. DOI: 10.1016/j.cemconres.2020.106078.
  • V.N. Nerella, S. Hempel, and V. Mechtcherine, Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing, Constr. Build. Mater., vol. 205, pp. 586–601, 2019. Available from https://linkinghub.elsevier.com/retrieve/pii/S0950061819302843. DOI: 10.1016/j.conbuildmat.2019.01.235.
  • B. Zahabizadeh, J. Pereira, C. Gonçalves, E.N.B. Pereira, and V. M. C. F. Cunha, Influence of the printing direction and age on the mechanical properties of 3D printed concrete, Mater. Struct., vol. 54, no. 2, pp. 73, 2021. Doi: 10.1617/s11527-021-01660-7.
  • Farid Benboudjema, Jérôme Carette, Brice Delsaute, Tulio Honorio de Faria, Agnieszka Knoppik, Laurie Lacarrière, Anne Neiry de Mendonça Lopes, Pierre Rossi, and Stéphanie Staquet, In: E.M.R. Fairbairn, M.A.D. Azenha (eds.), State of the Art Report of the RILEM Technical Committee 254-CMS Thermal Cracking of Massive Concrete Structures, Vol. 27.Springer International Publishing, Cham, 2019. p. 69–114. RILEM State-of-the-Art Reports). Available from Doi: 10.1007/978-3-319-76617-1_4.
  • G. De Schutter, and L. Taerwe, Degree of hydration-based description of mechanical properties of early age concrete, Mat. Struct., vol. 29, no. 6, pp. 335–344, 1996. DOI: 10.1007/BF02486341.
  • A. Mariak, M. Kurpińska, and K. Wilde, Maturity curve for estimating the in-place strength of high performance concrete, MATEC Web Conf., vol. 262, no. February, pp. 06007, 2019. DOI: 10.1051/matecconf/201926206007.
  • M. Sofi, P.A. Mendis, and D. Baweja, Estimating early-age in situ strength development of concrete slabs, Constr. Build. Mater., vol. 29, pp. 659–666, 2012. DOI: 10.1016/j.conbuildmat.2011.10.019.
  • R.C. Tank, and N.J. Carino, Rate constant functions for strength development of concrete, ACI Mater. J., vol. 88, no. 1, pp. 74–83, 1991. DOI: 10.14359/2403.
  • AENOR. UNE-EN 83160-1 2016 Determinación de la resistencia del hormigón a edades tempranas, Parte 1: Métodos aplicables. 2016.
  • ASTM International. ASTM C 1074-04. Standard Practice for Estimating Concrete Strength by the Maturity Method, 2004.
  • AENOR. UNE-EN 196-1 2018 Métodos de ensayo de cementos, Parte 1: Determinación de resistencias. 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.