223
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Thermo-elastic response of 2D-FGRPs with temperature-dependent material properties by means of the theory of elasticity

ORCID Icon
Pages 520-542 | Received 05 Nov 2021, Accepted 11 Dec 2021, Published online: 29 Dec 2021

References

  • S. Kaka, A. Pramuanjaroenkij, and X. Y. Zhou, A review of numerical modeling of solid oxide fuel cells, Int. J. Hydrogen Energy, vol. 32, no. 7, pp. 761–786, 2007. DOI: 10.1016/j.ijhydene.2006.11.028.
  • Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energy, vol. 88, no. 4, pp. 981–1007, 2011. DOI: 10.1016/j.apenergy.2010.09.030.
  • C. Iwasawa, M. Nagata, N. Kaneta, Y. Seino, and M. Ono, A Study of Anode Materials and Structures for SOFC, Proc. Vol., vol. 1997–40, no. 1, pp. 626–634, 1997. DOI: 10.1149/199740.0626PV.
  • R. Slowak, S. Hoffmann, R. Liedtke, and R. Waser, Functional graded high-K (Ba1xSrx)TiO3 thin films for capacitor structures with low temperature coefficient, Integr. Ferroelectr., vol. 24, no. 1–4, pp. 169–179, 1999.
  • E. Müller, Č. Drašar, J. Schilz, and W. A. Kaysser, Functionally graded materials for sensor and energy applications, Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process., vol. 362, no. 1–2, pp. 17–39, 2003. DOI: 10.1016/S0921-5093(03)00581-1.
  • M. K. Apalak, and M. D. Demirbas, Improved mathematical models of thermal residual stresses in functionally graded adhesively bonded joints: A critical review, Prog. Adhesion Adhes., vol. 5, pp. 367–415, 2020.
  • M. B. Bever, and P. E. Duwez, Gradients in composite materials, Mater. Sci. Eng., vol. 10, pp. 1–8, 1972. DOI: 10.1016/0025-5416(72)90059-6.
  • D. P. H. Hasselman, and G. E. Youngblood, Enhanced thermal stress resistance of structural ceramics with thermal conductivity gradient, J. Am. Ceramic Soc., vol. 61, no. 1–2, pp. 49–53, 1978. DOI: 10.1111/j.1151-2916.1978.tb09228.x.
  • M. Koizumi, Functionally gradient materials the concept of FGM, Ceram. Trans., vol. 34, pp. 3–10, 1993.
  • J. N. Reddy, and C. D. Chin, Thermomechanical analysis of functionally graded cylinders and plates, J. Therm. Stress., vol. 21, no. 6, pp. 593–626, 1998. DOI: 10.1080/01495739808956165.
  • M. M. Nemat-Alla, Reduction of thermal stresses by developing two dimensional functionally graded materials, Int. J. Solids Struct., vol. 40, no. 26, pp. 7339–7356, 2003. DOI: 10.1016/j.ijsolstr.2003.08.017.
  • M. M. Nemat-Alla, K. I. Ahmed, and I. M. Hassab-Allah, Elastic-plastic investigation on effectiveness of two dimensional functionally graded materials in reduction of thermal stresses, J. Eng. Sci. Assiut Univ., vol. 36, no. 3, pp. 689–710, 2008.
  • H. T. Thai, and S. E. Kim, A Review of theories for the modeling and analysis of functionally graded plates and shells, Compos. Struct., vol. 128, pp. 70–86, 2015. DOI: 10.1016/j.compstruct.2015.03.010.
  • K. Swaminathan, D. T. Naveenkumar, A. M. Zenkour, and E. Carrera, Stress, vibration and buckling analysis of FGM plates state-of-art review, Compos. Struct., vol. 120, pp. 10–31, 2015. DOI: 10.1016/j.compstruct.2014.09.070.
  • V. N. V. Do, and C. H. Thai, A modified Kirchhoff plate theory for analyzing thermo-mechanical static and buckling responses of functionally graded material plates, Thin-Walled Struct., vol. 117, pp. 113–126, 2017. DOI: 10.1016/j.tws.2017.04.005.
  • C. H. Thai, S. Kulasegaram, L. V. Tran, and H. Nguyen-Xuan, Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach, Comput. Struct., vol. 141, pp. 94–112, 2014. DOI: 10.1016/j.compstruc.2014.04.003.
  • T. K. Lim, and J. H. Kim, Thermo-elastic effects on shear correction factors for functionally graded beam, Compos. Part B. Eng., vol. 123, pp. 262–270, 2017. DOI: 10.1016/j.compositesb.2017.05.031.
  • N.-I. Kim, and J. Lee, Geometrically nonlinear isogeometric analysis of functionally graded plates based on first-order shear deformation theory considering physical neutral surface, Compos. Struct., vol. 153, pp. 804–814, 2016. DOI: 10.1016/j.compstruct.2016.07.002.
  • P. Phung-Van, M. Abdel-Wahab, K. M. Liew, S. P. A. Bordas, and H. Nguyen-Xuan, Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory, Compos. Struct., vol. 123, pp. 137–149, 2015. DOI: 10.1016/j.compstruct.2014.12.021.
  • I. M. Mudhaffar, A. Tounsi, A. Chikh, M. A. Al-Osta, M. M. Al-Zahrani, and S. U. Al-Dulaijan, Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation, Structures, vol. 33, pp. 2177–2189, 2021. DOI: 10.1016/j.istruc.2021.05.090.
  • M. A. Rachedi, S. Benyoucef, A. Bouhadra, R. B. Bouiadjra, M. Sekkal, and A. Benachour, Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation, Geomech. Eng., vol. 22, no. 1, pp. 65–80, 2020.
  • M. Taczała, R. Buczkowski, and M. Kleiber, Nonlinear buckling and post-buckling response of stiffened FGM plates in thermal environments, Compos. Part B. Eng., vol. 109, pp. 238–247, 2017. DOI: 10.1016/j.compositesb.2016.09.023.
  • B. Akgoz, and O. Civelek, Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams, Compos. Part B. Eng., vol. 129, pp. 77–87, 2017.
  • M. Ghannad, and M. Parhizkar Yaghoobi, 2D thermo elastic behavior of a FG cylinder under thermomechanical loads using a first order temperature theory, Int. J. Press. Vessels Pip., vol. 149, pp. 75–92, 2017. DOI: 10.1016/j.ijpvp.2016.12.002.
  • J. L. Mantari, and E. V. Granados, A refined FSDT for the static analysis of functionally graded sandwich plates, Thin-Walled Struct., vol. 90, pp. 150–158, 2015. DOI: 10.1016/j.tws.2015.01.015.
  • L. C. Trinh, T. P. Vo, H. T. Thai, and J. L. Mantari, Size-dependent behaviour of functionally graded sandwich microplates under mechanical and thermal loads, Compos. Part B. Eng., vol. 124, pp. 218–241, 2017. DOI: 10.1016/j.compositesb.2017.05.042.
  • J. L. Mantari, and F. G. Canales, Finite element formulation of laminated beams with capability to model the thickness expansion, Compos. Part B. Eng., vol. 101, pp. 107–115, 2016. DOI: 10.1016/j.compositesb.2016.06.080.
  • J. L. Mantari, and F. G. Canales, A unified quasi-3D HSDT for the bending analysis of laminated beams, Aerosp. Sci. Technol., vol. 54, pp. 267–275, 2016. DOI: 10.1016/j.ast.2016.04.026.
  • F. G. Canales, and J. L. Mantari, Buckling and free vibration of laminated beams with arbitrary boundary conditions using a refined HSDT, Compos. Part B. Eng., vol. 100, pp. 136–145, 2016. DOI: 10.1016/j.compositesb.2016.06.024.
  • M. Mohammadimehr, and M. Mostafavifar, Free vibration analysis of sandwich plate with a transversely flexible core and FG-CNTs reinforced nanocomposite face sheets subjected to magnetic field and temperature-dependent material properties using SGT, Compos. Part B. Eng., vol. 94, pp. 253–270, 2016. DOI: 10.1016/j.compositesb.2016.03.030.
  • H. S. Shen, Y. Xiang, F. Lin, and D. Hui, Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments, Compos. Part B. Eng., vol. 119, pp. 67–78, 2017. DOI: 10.1016/j.compositesb.2017.03.020.
  • M. W. Zaitoun, et al., Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramicmetal plate in a hygrothermal environment, Thin-Walled Struct., vol. 170, pp. 108549, 2022., DOI: 10.1016/j.tws.2021.108549.
  • S. I. Tahir, A. Chikh, A. Tounsi, M. A. Al-Osta, S. U. Al-Dulaijan, and M. M. Al-Zahrani, Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment, Compos. Struct., vol. 269, pp. 114030, 2021. DOI: 10.1016/j.compstruct.2021.114030.
  • M. Nemat-Alla, K. I. E. Ahmed, and I. Hassab-Allah, Elastic–plastic analysis of two-dimensional functionally graded materials under thermal loading, Int. J. Solids Struct., vol. 46, no. 14–15, pp. 2774–2786, 2009. DOI: 10.1016/j.ijsolstr.2009.03.008.
  • L. W. Zhang, Y. Zhang, and K. M. Liew, Vibration analysis of quadrilateral graphene sheets subjected to an in-plane magnetic field based on nonlocal elasticity theory, Compos. Part B. Eng., vol. 118, pp. 96–103, 2017. DOI: 10.1016/j.compositesb.2017.03.017.
  • M. D. Demirbas, and M. K. Apalak, Thermal stress analysis of one- and two-dimensional functionally graded plates subjected to in-plane heat fluxes, Proc. Inst. Mech. Eng. Part L J. Mater. Design Appl., vol. 233, no. 4, pp. 546–562, 2019. DOI: 10.1177/1464420716675507.
  • M. Adineh, and M. Kadkhodayan, Three-dimensional thermo-elastic analysis and dynamic response of a multi-directional functionally graded skew plate on elastic foundation, Compos. Part B. Eng., vol. 125, pp. 227–240, 2017. DOI: 10.1016/j.compositesb.2017.05.070.
  • S. A. Aya, and E. Tufekci, Modeling and analysis of out-of-plane behavior of curved nanobeams based on nonlocal elasticity, Compos. Part B. Eng., vol. 119, pp. 184–195, 2017. DOI: 10.1016/j.compositesb.2017.03.050.
  • A. Pourasghar, and Z. Chen, Thermoelastic response of CNT reinforced cylindrical panel resting on elastic foundation using theory of elasticity, Compos. Part B. Eng., vol. 99, pp. 436–444, 2016. DOI: 10.1016/j.compositesb.2016.06.028.
  • M. Filippi, E. Carrera, and A. M. Zenkour, Static analyses of FGM beams by various theories and finite elements, Compos. Part B. Eng., vol. 72, pp. 1–72, 2015. DOI: 10.1016/j.compositesb.2014.12.004.
  • I. A. Ramos, J. L. Mantari, A. Pagani, and E. Carrera, Refined theories based on non-polynomial kinematics for the thermoelastic analysis of functionally graded plates, J. Therm. Stress., vol. 39, no. 7, pp. 835–853, 2016. DOI: 10.1080/01495739.2016.1189771.
  • J. L. Mantari, I. A. Ramos, E. Carrera, and M. Petrolo, Static analysis of functionally graded plates using new non-polynomial displacement fields via Carrera Unified Formulation, Compos. Part B. Eng., vol. 89, pp. 127–142, 2016. DOI: 10.1016/j.compositesb.2015.11.025.
  • A. Pagani, A. G. de Miguel, M. Petrolo, and E. Carrera, Analysis of laminated beams via Unified Formulation and Legendre polynomial expansions, Compos. Struct., vol. 156, pp. 78–92, 2016. DOI: 10.1016/j.compstruct.2016.01.095.
  • E. Carrera, A. Pagani, and S. Valvano, Multilayered plate elements accounting for refined theories and node-dependent kinematics, Compos. Part B. Eng., vol. 114, pp. 189–210, 2017. DOI: 10.1016/j.compositesb.2017.01.022.
  • E. Carrera, E. Zappino, and G. Li, Finite element models with node-dependent kinematics for the analysis of composite beam structures, Compos. Part B. Eng., vol. 132, pp. 35–48, 2018. DOI: 10.1016/j.compositesb.2017.08.008.
  • T. Q. Bui, et al., On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory, Compos. Part B. Eng., vol. 92, pp. 218–241, 2016. DOI: 10.1016/j.compositesb.2016.02.048.
  • J. L. Mantari, and E. V. Granados, Dynamic analysis of functionally graded plates using a novel FSDT, Compos. Part B. Eng., vol. 75, pp. 148–155, 2015. DOI: 10.1016/j.compositesb.2015.01.028.
  • F. A. Fazzolari, Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations, Compos. Part B. Eng., vol. 136, pp. 254–271, 2018. DOI: 10.1016/j.compositesb.2017.10.022.
  • S. A. Farzam-Rad, B. Hassani, and A. Karamodin, Isogeometric analysis of functionally graded plates using a new quasi-3D shear deformation theory based on physical neutral surface, Compos. Part B. Eng., vol. 108, pp. 174–189, 2017. DOI: 10.1016/j.compositesb.2016.09.029.
  • H. Nguyen-Xuan, L. V. Tran, C. V. Thai, S. Kulasegaram, and S. P. A. Bordas, Isogeometric analysis of functionally graded plates using a refined plate theory, Compos. Part B. Eng., vol. 64, pp. 222–234, 2014. DOI: 10.1016/j.compositesb.2014.04.001.
  • M. Abualnour, M. S. A. Houari, A. Tounsi, E. A. A. Bedia, and S. R. Mahmoud, A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates, Compos. Struct., vol. 184, pp. 688–697, 2018. DOI: 10.1016/j.compstruct.2017.10.047.
  • M. H. Mansouri, and M. Shariyat, Biaxial thermo-mechanical buckling of orthotropic auxetic FGM plates with temperature and moisture dependent material properties on elastic foundations, Compos. Part B. Eng., vol. 83, pp. 88–104, 2015. DOI: 10.1016/j.compositesb.2015.08.030.
  • J. L. Mantari, General recommendations to develop 4-unknowns quasi-3D HSDTs to study FGMs, Aerosp. Sci. Technol., vol. 58, pp. 559–570, 2016. DOI: 10.1016/j.ast.2016.09.007.
  • J. L. Mantari, E. V. Granados, and C. Guedes Soares, Vibrational analysis of advanced composite plates resting on elastic foundation, Compos. Part B. Eng., vol. 66, pp. 407–419, 2014. DOI: 10.1016/j.compositesb.2014.05.026.
  • K. Mercan, and O. Civalek, Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ, Compos. Part B. Eng., vol. 114, pp. 34–45, 2017. DOI: 10.1016/j.compositesb.2017.01.067.
  • M. Merzoug, et al., 2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models, Geomech. Eng., vol. 22, no. 4, pp. 361–374, 2020.
  • M. Al-Osta, H. Saidi, A. Tounsi, and S. U. Al-Dulaijan, Influence of porosity on the hygro-thermo-mechanical bending response of an AFG ceramic-metal plates using an integral plate model, Smart Struct Syst., vol. 4, no. 28, pp. 499–513, 2021.
  • B. Merazka, et al., Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations, Steel Compos. Struct., vol. 39, no. 5, pp. 631–643, 2021.
  • J. M. T. Thompson, Basic principles in the general theory of elastic stability, J. Mech. Phys. Solids, vol. 11, no. 1, pp. 13–20, 1963. DOI: 10.1016/0022-5096(63)90003-6.
  • G. H. Golub, and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, MD, 1996.
  • MATLAB (Ver R2006b). The language of technical computing. 2006. Available from: http://www.mathworks.com.
  • S. P. Timoshenko, and J. N. Goodier, Theory of Elasticity, 1st ed., McGraw-Hill, New York, NY, 1951.
  • G. A. Greene, Heat Transfer, Encyclopedia of Physical Science and Technology, 3rd ed., Academic Press, Cambridge, MA, 2003.
  • W. H. Cubberiy, and H. Baker, Metal Handbook Ninth Edition, Volume 2, Properties and Selection: Nonferrous Alloys and Pure Metals, ASM, The Metals Park, OH, 1989.
  • T. Mori, and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfittings inclusions, Acta Metall., vol. 21, no. 5, pp. 571–574, 1973. DOI: 10.1016/0001-6160(73)90064-3.
  • B. W. Rosen, and Z. Hashin, Effective thermal expansion coefficients and specific heats of composite materials, Int. J. Eng. Sci., vol. 8, no. 2, pp. 157–173, 1970. DOI: 10.1016/0020-7225(70)90066-2.
  • H. Hatta, and M. Taya, Effective thermal conductivity of a misoriented short fiber composite, J. Appl. Phys., vol. 58, no. 7, pp. 2478–2486, 1985. DOI: 10.1063/1.335924.
  • Y. S. Touloukian, R. W. Powell, C. Y. Ho, and M. C. Nicolaou, Thermophysical properties of matter-the TPRC data series. Vol.10, Thermal Diffusivity, Plenum Publishing, New York, NY, 1973.
  • G. E. Forsythe, and W. R. Wasow, Finite Difference Methods for Partial Differential Equations, Wiley, New York, NY, 1960.
  • MatWeb. Online materials information resourse database. 2017. Available from: http://www.matweb.com.
  • M. D. Demirbas, Thermal stress analysis of functionally graded plates with temperature-dependent material properties using theory of elasticity, Compos. Part B. Eng., vol. 131, pp. 100–124, 2017. DOI: 10.1016/j.compositesb.2017.08.005.
  • M. K. Apalak, and M. D. Demirbas, In-plane thermal residual stresses in adhesively bonded functionally graded plates, The Sixteenth European Conference for Composite Materials (ECCM16), June 22–26, Seville, Spain, 2014.
  • M. K. Apalak, and M. D. Demirbas, In-plane thermal residual stresses in functionally graded plate, ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis, July 25–27, Copenhagen, Denmark, 2014. DOI: 10.1115/ESDA2014-20091.
  • M. D. Demirbas, R. Ekici, and M. K. Apalak, Thermal residual stress analysis of two-dimensional functionally graded plates with finite element and finite difference methods, ICENS 2018 4th International Conference on Engineering and Natural Science, May 2–6, Kiev Ukraine, 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.