241
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Research on topological configuration of lightweight high natural frequency plate structure

, &
Pages 543-552 | Received 20 Jun 2021, Accepted 12 Dec 2021, Published online: 31 Dec 2021

References

  • Xuemin Wang, Tingge Xu, Monica Jung de Andrade, Ihika Rampalli, Dongyang Cao, Mohammad Haque, Samit Roy, Ray H. Baughman, and Hongbing Lu, The interfacial shear strength of carbon nanotube sheet modified carbon fiber composites. In: M. Silberstein and A. Amirkhizi (eds.), Challenges in Mechanics of Time Dependent Materials, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham, pp. 25–32, 2021.
  • Dongyang Cao, Sadeq Malakooti, Vijay N. Kulkarni, Yao Ren, Yingjian Liu, Xu Nie, Dong Qian, D. Todd Griffith, and Hongbing Lu, The effect of resin uptake on the flexural properties of compression molded sandwich composites, Wind Energy, pp. 1–23, 2021. DOI: 10.1002/we.2661.
  • Dongyang Cao, Sadeq Malakooti, Vijay N. Kulkarni, Yao Ren, and Hongbing Lu, Nanoindentation measurement of core–skin interphase viscoelastic properties in a sandwich glass composite, Mech. Time-Depend. Mater., vol. 25, no. 3, pp. 353–363, 2021. DOI: 10.1007/s11043-020-09448-y.
  • Z. Zhong and E. Shang, Closed-form solutions of three-dimensional functionally graded plates, Mech. Adv. Mater. Struct., vol. 15, no. 5, pp. 355–363, 2008. DOI: 10.1080/15376490801977528.
  • M. Bennoun, M.S.A. Houari, and A. Tounsi, A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates, Mech. Adv. Mater. Struct., vol. 23, no. 4, pp. 423–400, 2016. DOI: 10.1080/15376494.2014.984088.
  • R.B. Haber, C.S. Jog, and M.P. Bendsoe, A new approach to variable-topology shape design using a constraint on perimeter, Struct. Optim., vol. 11, no. 1–2, pp. 1–12, 1996. DOI: 10.1007/BF01279647.
  • G.H. Yoon, H. Choi, and H. So, Development and optimization of a resonance-based mechanical dynamic absorber structure for multiple frequencies, J. Low Freq. Noise Vib. Act. Control., vol. 40, no. 2, pp. 880–897, 2021. DOI: 10.1177/1461348419855533.
  • J. Du and N. Olhoff, Topological design of vibrating structures with respect to optimum sound pressure characteristics in a surrounding acoustic medium, Struct. Multidisc. Optim., vol. 42, no. 1, pp. 43–54, 2010. DOI: 10.1007/s00158-009-0477-y.
  • J. Zhao and C. Wang, Topology optimization for minimizing the maximum dynamic response in the time domain using aggregation functional method, Comput. Struct., vol. 190, pp. 41–60, 2017. DOI: 10.1016/j.compstruc.2017.05.002.
  • J. Du and N. Olhoff, Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps, Struct. Multidisc. Optim., vol. 34, no. 2, pp. 91–110, 2007. DOI: 10.1007/s00158-007-0101-y.
  • S. Jensen and N.L. Pedersen, On maximal eigenfrequency separation in two-material structures: the 1D and 2D scalar cases, J. Sound Vibr., vol. 289, no. 4–5, pp. 967–986, 2006. DOI: 10.1016/j.jsv.2005.03.028.
  • B. Xu, Y.S. Han, L. Zhao, and Y.M. Xie, Topology optimization of continuum structures for natural frequencies considering casting constraints, Eng. Optim., vol. 51, no. 6, pp. 941–960, 2019. DOI: 10.1080/0305215X.2018.1506771.
  • G.H. Yoon, Maximizing the fundamental eigenfrequency of geometrically nonlinear structures by topology optimization based on element connectivity parameterization, Comput. Struct., vol. 88, no. 1–2, pp. 120–133, 2010. DOI: 10.1016/j.compstruc.2009.07.006.
  • Z.D. Ma, H.C. Cheng, and N. Kikuchi, Structural design for obtaining desired eigenfrequencies by using the topology and shape optimization method, Comput. Syst. Eng., vol. 5, no. 1, pp. 77–89, 1994. DOI: 10.1016/0956-0521(94)90039-6.
  • H. An, S. Chen, and H. Huang, Multi-objective optimal design of hybrid composite laminates for minimum cost and maximum fundamental frequency and frequency gaps, Compos. Struct., vol. 209, pp. 268–276, 2019. DOI: 10.1016/j.compstruct.2018.10.075.
  • M.K. Leader, T.W. Chin, and G.J. Kennedy, High-resolution topology optimization with stress and natural frequency constraints, AIAA J., vol. 57, no. 8, pp. 3562–3578, 2019. DOI: 10.2514/1.J057777.
  • Q. Li, Q. Wu, J. Liu, J. He, and S. Liu, Topology optimization of vibrating structures with frequency band constraints, Struct. Multidisc. Optim., vol. 63, no. 3, pp. 1203–1218, 2021. DOI: 10.1007/s00158-020-02753-7.
  • A.R. Díaaz and N. Kikuchi, Solutions to shape and topology eigenvalue optimization problems using a homogenization method, Int. J. Numer. Meth. Eng., vol. 35, no. 7, pp. 1487–1502, 1992. DOI: 10.1002/nme.1620350707.
  • N.L. Pedersen, Maximization of eigenvalues using topology optimization, Struct. Multidisc. Optim., vol. 20, no. 1, pp. 2–11, 2000. DOI: 10.1007/s001580050130.
  • B. Li, H. Liu, Z. Yang, and J. Zhang, Stiffness design of plate/shell structures by evolutionary topology optimization, Thin-Walled Struct., vol. 141, pp. 232–250, 2019. DOI: 10.1016/j.tws.2019.04.012.
  • H. Liu, B. Li, Z. Yang, and J. Hong, Topology optimization of stiffened plate/shell structures based on adaptive morphogenesis algorithm, J. Manuf. Syst., vol. 43, pp. 375–384, 2017. DOI: 10.1016/j.jmsy.2017.02.002.
  • T. Hu, X. Ding, L. Shen, and H. Zhang, Improved adaptive growth method of stiffeners for three-dimensional box structures with respect to natural frequencies, Comput. Struct., vol. 239, pp. 1–10, 2020.
  • L. Iuspa, Inverse anamorphosis and multi-map techniques for free topology generation of curved self-stiffened panels using skeleton-based integral soft objects, Thin-Walled Struct., vol. 154, pp. 1–27, 2020.
  • B.T. Warwick, C.K. Mechefske, and I.Y. Kim, Topology optimization of a pre-stiffened aircraft bulkhead, Struct. Multidisc. Optim., vol. 60, no. 4, pp. 1667–1685, 2019. DOI: 10.1007/s00158-019-02284-w.
  • S. Liu, Q. Li, W. Chen, and R. Hu, and L. Tong, H-DGTP-a heaviside-function based directional growth topology parameterization for design optimization of stiffener layout and height of thin-walled structures, Struct. Multidisc. Optim., vol. 52, no. 5, pp. 903–913, 2015. DOI: 10.1007/s00158-015-1281-5.
  • M.P. Bendsøe and N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput. Meth. Appl. Mech. Eng., vol. 71, no. 2, pp. 197–224, 1988. DOI: 10.1016/0045-7825(88)90086-2.
  • M. Zhou and G. Rozvany, The COC algorithm, Part II: Topological, geometrical and generalized shape optimization, Comput. Meth. Appl. Mech. Eng., vol. 89, no. 1-3, pp. 309–336, 1991. DOI: 10.1016/0045-7825(91)90046-9.
  • O.K. Lim and S.L. Jin, Structural topology optimization for the natural frequency of a designated mode, KSME Int. J., vol. 14, no. 3, pp. 306–313, 2000. DOI: 10.1007/BF03186423.
  • R.C. Thompson and W.L. Richards, Thermal-Structural Panel Buckling Tests, National Aeronautics and Space Administration, AMES Research Center, Dryden Flight Research Facility, NASA Technical Memorandum, United States, 1991.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.