223
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Time-dependent creep and shrinkage analysis of curved steel–concrete composite box beams

, , , &
Pages 563-581 | Received 18 Oct 2021, Accepted 12 Dec 2021, Published online: 28 Dec 2021

References

  • S. K. Kumar, M. Cinefra, E. Carrera, R. Ganguli, and D. Harursampath, Finite element analysis of free vibration of the delaminated composite plate with variable kinematic multilayered plate elements, Compos. Part B., vol. 66, pp. 453–465, 2014. DOI: 10.1016/j.compositesb.2014.05.031.
  • C. K. Hirwani, S. K. Panda, T. R. Mahapatra, and S. S. Mahapatra, Nonlinear transient finite-element analysis of delaminated composite shallow shell panels, AIAA J., vol. 55, no. 5, pp. 1715–1734, 2017. DOI: 10.2514/1.J055624.
  • B. K. Patle, C. K. Hirwani, R. P. Singh, and S. K. Panda, Eigenfrequency and deflection analysis of layered structure using uncertain elastic properties – a fuzzy finite element approach, Int. J. Approximate Reason., vol. 98, pp. 163–176, 2018. DOI: 10.1016/j.ijar.2018.04.013.
  • C. K. Hirwani and S. K. Panda, Numerical nonlinear frequency analysis of pre-damaged curved layered composite structure using higher-order finite element method, Int. J. Non. Lin. Mech., vol. 102, pp. 14–24, 2018. DOI: 10.1016/j.ijnonlinmec.2018.03.005.
  • A. Das, C. K. Hirwani, S. K. Panda, U. Topal, and T. Dede, Prediction and analysis of optimal frequency of layered composite structure using higher-order FEM and soft computing techniques, Steel Compos. Struct., vol. 29, no. 6, pp. 749–758, 2018.
  • C. K. Hirwani and S. K. Panda, Nonlinear finite element solutions of thermoelastic deflection and stress responses of internally damaged curved panel structure, Appl. Math. Modell., vol. 65, pp. 303–317, 2019. DOI: 10.1016/j.apm.2018.08.014.
  • H. K. Pandey, C. K. Hirwani, N. Sharma, P. V. Katariya, H. C. Dewangan, and S. K. Panda, Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses – an FEM approach and experimental verification, Adv. Nano Res., vol. 7, no. 6, pp. 419–429, 2019.
  • C. K. Hirwani, S. K. Panda, and P. K. Mishra, Influence of debonding on nonlinear deflection responses of curved composite panel structure under hygro-thermo-mechanical loading–macro-mechanical FE approach, Int. J. Non. Lin. Mech., vol. 128, pp. 103636, 2021. DOI: 10.1016/j.ijnonlinmec.2020.103636.
  • M. R. T. Arruda, L. M. S. Castro, A. J. M. Ferreira, M. Garrido, J. Gonilha, and J. R. Correia, Analysis of composite layered beams using Carrera unified formulation with Legendre approximation, Compos. B., vol. 137, pp. 39–50, 2018. DOI: 10.1016/j.compositesb.2017.10.040.
  • M. R. T. Arruda, L. M. S. Castro, A. J. M. Ferreira, D. Martins, and J. R. Correia, Physically non-linear analysis of beam models using Carrera Unified Formulation, Compos. Struct., vol. 195, pp. 60–73, 2018. DOI: 10.1016/j.compstruct.2018.03.107.
  • X. Xu, N. Fallahi, and H. Yang, Efficient CUF-based FEM analysis of thin-wall structures with Lagrange polynomial expansion, Mech. Adv. Mater. Struct., pp. 1–22, 2020. DOI: 10.1080/15376494.2020.1818331.
  • V. Z. Vlasov, Thin-walled elastic beams, 2nd ed. Israel Program for Scientific Translation, Israel, pp. 35–36, 1961.
  • C. P. Heins and K. R. Spates, Behavior of single horizontally curved girder, Proc. Am. Soc. Civil Eng., vol. 99, pp. 1511–1524, 1970.
  • S. Komatsu, H. Nakai, and T. Kitada, Study on shear lag and effective width of curved girder bridges, Proc. Jpn. Soc. Civil Eng., vol. 1971, no. 191, pp. 1–14, 1971 (in Japanese). DOI: 10.2208/jscej1969.1971.191_1.
  • H. R. Evans and W. N. Al-Rifaie, An experimental and theoretical investigation of the behaviour of box girders curved in plan, Proc. Inst. Civil Eng. 2., vol. 59, no. 2, pp. 323–352, 1975. DOI: 10.1680/iicep.1975.3743.
  • K. R. Moffatt and P. J. Dowling, Shear lag in steel box girder bridges, Inst. Struct. Eng., vol. 53, no. 10, pp. 439–448, 1975.
  • T. Yoshimura and N. Nirasawa, On the stress distribution and effective width of curved girder bridges by the folded plate theory, Proc. Jpn. Soc. Civil Eng., vol. 1975, no. 233, pp. 45–54, 1975. (in Japanese) DOI: 10.2208/jscej1969.1975.45.
  • K. Hasebe, S. Usuki, and Y. Horie, Shear lag analysis and effective width of curved girder bridges, ASCE J. Eng. Mech., vol. 111, no. 1, pp. 87–92, 1985. DOI: 10.1061/(ASCE)0733-9399(1985)111:1(87).
  • Y. Arizumi, S. Hamada, and T. Oshiro, Experimental and analytical studies on behavior of curved composite box girders, Univ. Ryukyus, vol. 34, pp. 175–192, 1987.
  • H. Nakai and C. H. Yoo, Analysis and Design of Curved Steel Bridges, McGraw-Hill Co., New York, 1988.
  • L. F. Boswell and S. H. Zhang, A box finite beam element for the elastic analysis of thin-walled structures, Thin-Walled Struct., vol. 1, no. 4, pp. 353–383, 1983. DOI: 10.1016/0263-8231(83)90014-9.
  • S. H. Zhang and L. P. R. Lyons, A thin-walled box finite beam element for curved bridge analysis, Comput. Struct., vol. 18, no. 6, pp. 1035–1046, 1984. DOI: 10.1016/0045-7949(84)90148-2.
  • A. G. Razaqpur and H. G. Li, Refined analysis of curved thin-walled multicell box girders, Comput. Struct., vol. 53, no. 1, pp. 131–142, 1994. DOI: 10.1016/0045-7949(94)90136-8.
  • Q. Z. Luo and Q. S. Li, Shear lag of thin-walled curved box girder bridges, J. Eng. Mech., vol. 126, no. 10, pp. 1111–1114, 2000. DOI: 10.1061/(ASCE)0733-9399(2000)126:10(1111).
  • Z. Zhang, Study on the key mechanical property of thin-walled bar with closed section and its engineering application, Master dissertation, Southwest Jiaotong University, 2012 (in Chinese).
  • L. Dezi, F. Gara, G. Leoni, and A. M. Tarantino, Time-dependent analysis of shear-lag effect in composite beams, J. Eng. Mech., vol. 127, no. 1, pp. 71–79, 2001. DOI: 10.1061/(ASCE)0733-9399(2001)127:1(71).
  • F. Gara, G. Leoni, and L. Dezi, A finite beam element including shear lag effect for the time-dependent analysis of steel–concrete composite decks, Eng. Struct., vol. 31, no. 8, pp. 1888–1902, 2009. DOI: 10.1016/j.engstruct.2009.03.017.
  • R. E. Erkmen and M. A. Bradford, Nonlinear elastic analysis of composite beams curved in-plan, Eng. Struct., vol. 31, no. 7, pp. 1613–1624, 2009. DOI: 10.1016/j.engstruct.2009.02.016.
  • The International Federation for Structural Concrete. CEB Design Manual on Structural Effects of Time Dependent Behavior of Concrete, CEB Bulletin d’Information, Saint-Saphorin, Switzerland, 1984.
  • Z. P. Bazant, and S. Baweja, Creep and shrinkage prediction model for analysis and design of concrete structures: model B3, Adam Neville Symposium: Creep and Shrinkage–Structural Design Effects, Michigan, USA, pp. 1–83, 2000.
  • Z. P. Bazant, Prediction of concrete creep effects using age-adjusted effective modulus method, ACI J., vol. 69, no. 4, pp. 212–217, 1972.
  • Z. P. Bazant, Numerical determination of long-range stress history from strain history in concrete, Mater. Struct., vol. 5, no. 27, pp. 135–141, 1972.
  • Z. P. Bazant and S. T. Wu, Rate-type creep law of aging concrete based on Maxwell chain, Mater. Struct., vol. 7, no. 37, pp. 45–60, 1974.
  • B. Jurkiewiez, J. F. Destrebecq, and V. Alain, Incremental analysis of time-dependent effects in composite structures, Comput. Struct., vol. 73, nos. 1–5, pp. 425–435, 1999. DOI: 10.1016/S0045-7949(98)00269-7.
  • B. Jurkiewiez, S. Buzon, and J. G. Sieffert, Incremental viscoelastic analysis of composite beams with partial interaction, Comput. Struct., vol. 83, nos. 21–22, pp. 1780–1791, 2005. DOI: 10.1016/j.compstruc.2005.02.021.
  • R. E. Erkmen and M. A. Bradford, Nonlinear quasi-viscoelastic behavior of composite beams curved in-plan, J. Eng. Mech., vol. 137, no. 4, pp. 238–247, 2011. DOI: 10.1061/(ASCE)EM.1943-7889.0000221.
  • R. E. Erkmen and M. A. Bradford, Time-dependent creep and shrinkage analysis of composite beams curved in-plan, Comput. Struct., vol. 89, no. 1–2, pp. 67–77, 2011. DOI: 10.1016/j.compstruc.2010.08.004.
  • Z. P. Bazant, and A. Asghari, Computation of age-dependent relaxation spectra, Cem. Concr. Res., vol. 4, no. 4, pp. 567–579, 1974. DOI: 10.1016/0008-8846(74)90007-6.
  • Z. P. Bazant and S. S. Kim, Approximate relaxation function for concrete, J. Struct. Div., vol. 105, no. 12, pp. 2695–2705, 1979. DOI: 10.1061/JSDEAG.0005318.
  • Z. P. Bazant, Mathematical Modeling of Creep and Shrinkage of Concrete, Wiley, New York, 1988.
  • G. M. Wang, L. Zhu, X. L. Ji, and W. Y. Ji, Finite beam element for curved steel-concrete composite box beams considering time-dependent effect, Materials, vol. 13, no. 15, pp. 3253, 2020. DOI: 10.3390/ma13153253.
  • L. Zhu, J. J. Wang, M. J. Li, C. Chen, and G. M. Wang, Finite beam element with 22 DOF for curved composite box girders considering torsion, distortion, and biaxial slip, Archivcivmecheng, vol. 20, no. 4, pp. 101, 2020. DOI: 10.1007/s43452-020-00098-y.
  • V. V. Novozhilov and J. M. R. Radok, Thin Shell Theory. London, Springer, 2014.
  • J. Q. Guo, Z. Z. Fang, and Z. Zheng, Design Theory of Box Girder, China Communication Press, 2008. (in Chinese).
  • L. R. Herrmann, and F. E. Peterson, A numerical procedure for viscoelastic stress analysis, Proceedings 7th Meeting of ICRPG Mechanical Behavior Working Group, Orlando, FL, 1968.
  • R. L. Taylor, K. S. Pister, and G. L. Goudreau, Thermomechanical analysis of viscoelastic solids, Int. J. Numer. Meth. Eng., vol. 2, no. 1, pp. 45–79, 1970. DOI: 10.1002/nme.1620020106.
  • L. Zhu, R. K. L. Su, J. X. Huo, and G. M. Wang, Test of the long-term behavior of curved steel–concrete composite box beams: case study, J. Bridge Eng., vol. 26, no. 9, pp. 05021009, 2021. DOI: 10.1061/(ASCE)BE.1943-5592.0001762.
  • J. G. Ollgaard, R. G. Slutter, and J. W. Fisher, Shear strength of stud connectors in lightweight and normal weight concrete, AISC Eng. J., vol. 8, no. 2, pp. 495–506, 1971.
  • L. Zhu, and R. K. L. Su, Analytical solutions for composite beams with slip, shear-lag and time-dependent effects, Eng. Struct., vol. 152, pp. 559–578, 2017. DOI: 10.1016/j.engstruct.2017.08.071.
  • Comite Euro International Du Beton, CEB-FIP Model Code 1990, Thomas Telford, London, 1993.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.