857
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Bistable inclined beam connected in series for quasi-zero stiffness

, &
Pages 1285-1298 | Received 25 Nov 2021, Accepted 12 Jan 2022, Published online: 08 Mar 2022

References

  • J. Qiu, J. H. Lang, and A. H. Slocum, A curved-beam bistable mechanism, J. Microelectromech. Syst., vol. 13, no. 2, pp. 137–146, 2004. DOI: 10.1109/JMEMS.2004.825308.
  • S. Shan, et al., Multistable architected materials for trapping elastic strain energy, Adv. Mater., vol. 27, no. 29, pp. 4296–4301, 2015. DOI: 10.1002/adma.201501708.
  • J. Zhao, N. Jia, X. He, and H. Wang, Post-buckling and snap-through behavior of inclined slender beams, J. Appl. Mech. Trans. ASME, vol. 75, no. 4, pp. 041020, 2008. DOI: 10.1115/1.2870953.
  • Z. Zhang, et al., Bistable morphing composite structures: A review, Thin-Walled Struct., vol. 142, pp. 74–97, 2019. DOI: 10.1016/j.tws.2019.04.040.
  • Z. Whitman, and VLa Saponara, Bistable structures for energy absorption II: Composite structures under tension, JOMMS, vol. 2, no. 2, pp. 359–375, 2007. DOI: 10.2140/jomms.2007.2.359.
  • C. Winkelmann, S. S. Kim, and VLa Saponara, Design and development of hybrid composite bistable structures for energy absorption under quasi-static tensile loading, Compos. Struct., vol. 93, no. 1, pp. 171–178, 2010. DOI: 10.1016/j.compstruct.2010.06.002.
  • G. Scarselli, F. Nicassio, F. Pinto, F. Ciampa, O. Iervolino, and M. Meo, A novel bistable energy harvesting concept, Smart Mater. Struct., vol. 25, no. 5, pp. 055001, 2016. DOI: 10.1088/0964-1726/25/5/055001.
  • Z. Lu, K. Li, H. Ding, and L. Chen, Nonlinear energy harvesting based on a modified snap-through mechanism, Appl. Math. Mech. (English Ed.), vol. 40, no. 1, pp. 167–180, 2019. DOI: 10.1007/s10483-019-2408-9.
  • C. Qiao, Y. Haddab, and P. Lutz, Digital microrobotics based on bistable modules: Design of compliant bistable structures, in: 2008 IEEE/ASME Int. Conf. Mechatronics Embed. Syst. Appl. MESA 2008, 2008. DOI: 10.1109/MESA.2008.4735711.
  • Z. Chen, Q. Guo, C. Majidi, W. Chen, D. J. Srolovitz, and M. P. Haataja, Nonlinear geometric effects in mechanical bistable morphing structures, Phys. Rev. Lett., vol. 109, no. 11, pp. 114302, 2012. DOI: 10.1103/PhysRevLett.109.114302.
  • B. Haghpanah, H. Ebrahimi, D. Mousanezhad, J. Hopkins, and A. Vaziri, Programmable elastic metamaterials, Adv. Eng. Mater., vol. 18, no. 4, pp. 643–649, 2016. DOI: 10.1002/adem.201500295.
  • O. R. Bilal, A. Foehr, and C. Daraio, Bistable metamaterial for switching and cascading elastic vibrations, Proc. Natl. Acad. Sci. U. S. A., vol. 114, no. 18, pp. 4603–4606, 2017. DOI: 10.1073/pnas.1618314114.
  • A. D. Shaw, S. A. Neild, D. J. Wagg, P. M. Weaver, and A. Carrella, A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation, J. Sound Vib., vol. 332, no. 24, pp. 6265–6275, 2013. DOI: 10.1016/j.jsv.2013.07.016.
  • A. D. Shaw, S. A. Neild, and D. J. Wagg, Dynamic analysis of high static low dynamic stiffness vibration isolation mounts, J. Sound Vib., vol. 332, no. 18, pp. 1437–1455, 2013. DOI: 10.1016/j.jsv.2012.10.036.
  • Y. Zhou, P. Chen, and G. Mosqueda, Analytical and numerical investigation of quasi-zero stiffness vertical isolation system, J. Eng. Mech., vol. 145, no. 6, pp. 04019035, 2019. DOI: 10.1061/(ASCE)EM.1943-7889.0001611.
  • M. Alturki, and R. Burgueño, Multistable cosine-curved dome system for elastic energy dissipation, J. Appl. Mech. Trans. ASME, vol. 86, no. 9, pp. 091002, 2019. DOI: 10.1115/1.4043792.
  • M. Alturki, and R. Burgueño, Equivalent viscous damping for a system with energy dissipation via elastic instabilities, Eng. Struct., vol. 220, pp. 110753, 2020. DOI: 10.1016/j.engstruct.2020.110753.
  • J. Winterflood, and D. G. Blair, A long-period conical pendulum for vibration isolation, Phys. Lett. Sect. A Gen. At. Solid State Phys., vol. 222, no. 3, pp. 141–147, 1996. DOI: 10.1016/0375-9601(96)00619-6.
  • Z. D. Xu, P. P. Gai, H. Y. Zhao, X. H. Huang, and L. Y. Lu, Experimental and theoretical study on a building structure controlled by multi-dimensional earthquake isolation and mitigation devices, Nonlinear Dyn., vol. 89, no. 1, pp. 723–740, 2017. DOI: 10.1007/s11071-017-3482-5.
  • D. Xu, Q. Yu, J. Zhou, and S. R. Bishop, Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic, J. Sound Vib., vol. 332, no. 14, pp. 3377–3389, 2013. DOI: 10.1016/j.jsv.2013.01.034.
  • D. Xu, Y. Zhang, J. Zhou, and J. Lou, On the analytical and experimental assessment of the performance of a quasi-zero-stiffness isolator, JVC/J. Vib. Control, vol. 20, no. 15, pp. 2314–2325, 2014. DOI: 10.1177/1077546313484049.
  • B. Yan, H. Ma, L. Zhang, W. Zheng, K. Wang, and C. Wu, A bistable vibration isolator with nonlinear electromagnetic shunt damping, Mech. Syst. Signal Process, vol. 136, pp. 106504, 2020. DOI: 10.1016/j.ymssp.2019.106504.
  • T. D. Le, and K. K. Ahn, A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat, J. Sound Vib., vol. 330, no. 26, pp. 6311–6335, 2011. DOI: 10.1016/j.jsv.2011.07.039.
  • A. A. Sarlis, D. T. R. Pasala, M. C. Constantinou, A. M. Reinhorn, S. Nagarajaiah, and D. P. Taylor, Negative stiffness device for seismic protection of structures, J. Struct. Eng., vol. 139, no. 7, pp. 1124–1133, 2013. DOI: 10.1061/(ASCE)ST.1943-541X.0000616.
  • C. C. Lan, S. A. Yang, and Y. S. Wu, Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads, J. Sound Vib., vol. 333, no. 20, pp. 4843–4858, 2014. DOI: 10.1016/j.jsv.2014.05.009.
  • S. Ishida, H. Uchida, H. Shimosaka, and I. Hagiwara, Design and numerical analysis of vibration isolators with quasi-zero-stiffness characteristics using bistable foldable structures, J. Vib. Acoust. Trans. ASME, vol. 139, no. 3, pp. 031015, 2017. DOI: 10.1115/1.4036096.
  • K. Inamoto, and S. Ishida, Improved feasible load range and its effect on the frequency response of origami-inspired vibration isolators with quasi-zero-stiffness characteristics, J. Vib. Acoust. Trans. ASME, vol. 141, no. 2, pp. 021004, 2019. DOI: 10.1115/1.4041368.
  • Z. Lu, Y. Tiejun, M. J. Brennan, Z. Liu, and L. Q. Chen, Experimental investigation of a two-stage nonlinear vibration isolation system with high- static-low-dynamic stiffness, J. Appl. Mech. Trans. ASME, vol. 84, no. 2, pp. 021001, 2017. DOI: 10.1115/1.4034989.
  • Z. Q. Lu, D. H. Gu, H. Ding, W. Lacarbonara, and L. Q. Chen, Nonlinear vibration isolation via a circular ring, Mech. Syst. Signal Process, vol. 136, pp. 106490, 2020. DOI: 10.1016/j.ymssp.2019.106490.
  • B. A. Fulcher, D. W. Shahan, M. R. Haberman, C. C. Seepersad, and P. S. Wilson, Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems, J. Vib. Acoust. Trans. ASME, vol. 136, no. 3, pp. 031009, 2014. DOI: 10.1115/1.4026888.
  • G. L. Leandri, A. Sunderland, J. Winterflood, and L. Ju, Six degrees of freedom vibration isolation with Euler springs, Rev. Sci. Instrum., vol. 92, no. 2, pp. 025122, 2021. DOI: 10.1063/5.0038528.
  • Z. Q. Lu, L. Zhao, H. Ding, and L. Q. Chen, A dual-functional metamaterial for integrated vibration isolation and energy harvesting, J. Sound Vib., vol. 509, pp. 116251, 2021. DOI: 10.1016/j.jsv.2021.116251.
  • H. Fan, L. Yang, Y. Tian, and Z. Wang, Design of metastructures with quasi-zero dynamic stiffness for vibration isolation, Compos. Struct., vol. 243, pp. 112244, 2020. DOI: 10.1016/j.compstruct.2020.112244.
  • H. Fan, Y. Tian, L. Yang, D. Hu, and P. Liu, Multistable mechanical metamaterials with highly tunable strength and energy absorption performance, Mech. Adv. Mater. Struct., 2020. DOI: 10.1080/15376494.2020.1834653.
  • C. Cai, J. Zhou, L. Wu, K. Wang, D. Xu, and H. Ouyang, Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps, Compos. Struct., vol. 236, pp. 111862, 2020. DOI: 10.1016/j.compstruct.2020.111862.
  • J. Zhou, H. Pan, C. Cai, and D. Xu, Tunable ultralow frequency wave attenuations in one-dimensional quasi-zero-stiffness metamaterial, Int. J. Mech. Mater. Des., vol. 17, pp. 285–300, 2021. DOI: 10.1007/s10999-020-09525-7.
  • S. Awtar, A. H. Slocum, and E. Sevincer, Characteristics of beam-based flexure modules, J. Mech. Des. Trans. ASME, vol. 129, no. 6, pp. 625–639, 2007. DOI: 10.1115/1.2717231.
  • F. Ma, and G. Chen, Modeling large planar deflections of flexible beams in compliant mechanisms using chained beam-constraint-model, J. Mech. Robot., vol. 8, no. 2, pp. 021018, 2016. DOI: 10.1115/1.4031028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.