245
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Buckling analysis of multilayer FG-CNT reinforced nanocomposite cylinders assuming CNT waviness, agglomeration, and interphase effects using the CUF-EFG method

ORCID Icon & ORCID Icon
Pages 1309-1325 | Received 03 Sep 2021, Accepted 13 Jan 2022, Published online: 02 Feb 2022

References

  • E. Carrera, and M. Petrolo, Refined one-dimensional formulations for laminated structure analysis, AIAA J., vol. 50, no. 1, pp. 176–189, 2012. DOI: 10.2514/1.J051219.
  • M. Lezgy-Nazargah, M. Shariyat, and S. B. Beheshti-Aval, A refined high-order global-local theory for finite element bending and vibration analyses of laminated composite beams, Acta Mech., vol. 217, no. 3–4, pp. 219–242, 2011. DOI: 10.1007/s00707-010-0391-9.
  • P. Zhang, and Y. Fu, A higher-order beam model for tubes, Eur. J. Mech. A Solids, vol. 38, pp. 12–19, 2013. DOI: 10.1016/j.euromechsol.2012.09.009.
  • A. J. M. Ferreira, et al., Analysis of thick isotropic and cross-ply laminated plates by generalized differential quadrature method and a unified formulation, Compos. B En., vol. 58, pp. 544–552, 2014. DOI: 10.1016/j.compositesb.2013.10.088.
  • A. Eijo, E. Oñate, and S. Oller, Delamination in laminated plates using the 4-noded quadrilateral QLRZ plate element based on the refined zigzag theory, Compos. Struct., vol. 108, pp. 456–471, 2014. DOI: 10.1016/j.compstruct.2013.09.052.
  • A. S. Sayyad, Y. M. Ghugal, and N. S. Naik, Bending analysis of laminated composite and sandwich beams according to refined trigonometric beam theory, Curved Layered Struct., vol. 2, no. 1, pp. 279–289, 2015. DOI: 10.1515/cls-2015-0015.
  • G. L. She, F. G. Yuan, and Y. R. Ren, Nonlinear analysis of bending, thermal buckling and post-buckling for functionally graded tubes by using a refined beam theory, Compos. Struct., vol. 165, pp. 74–82, 2017. DOI: 10.1016/j.compstruct.2017.01.013.
  • A. Dabbagh, A. Rastgoo, and F. Ebrahimi, Finite element vibration analysis of multi-scale hybrid nanocomposite beams via a refined beam theory, Thin-Walled Struct., vol. 140, pp. 304–317, 2019. DOI: 10.1016/j.tws.2019.03.031.
  • D. Li, Layerwise theories of laminated composite structures and their applications: A review, Arch. Comput. Methods Eng., vol. 28, no. 2, pp. 577–600, 2021. DOI: 10.1007/s11831-019-09392-2.
  • E. Carrera, G. Giunta, P. Nali, and M. Petrolo, Refined beam elements with arbitrary cross-section geometries, Comput. Struct., vol. 88, no. 5–6, pp. 283–293, 2010. DOI: 10.1016/j.compstruc.2009.11.002.
  • E. Carrera, and G. Giunta, Refined beam theories based on a unified formulation, Int. J. Appl. Mech., vol. 02, no. 01, pp. 117–143, 2010. DOI: 10.1142/S1758825110000500.
  • E. Carrera, M. Filippi, and E. Zappino, Free vibration analysis of rotating composite blades via Carrera Unified Formulation, Compos. Struct., vol. 106, pp. 317–325, 2013. DOI: 10.1016/j.compstruct.2013.05.055.
  • J. L. Mantari, I. A. Ramos, E. Carrera, and M. Petrolo, Static analysis of functionally graded plates using new non-polynomial displacement fields via Carrera Unified Formulation, Compos. B Eng., vol. 89, pp. 127–142, 2016. DOI: 10.1016/j.compositesb.2015.11.025.
  • S. K. Kumar, D. Harursampath, E. Carrera, M. Cinefra, and S. Valvano, Modal analysis Of DELAMINATED plates and shells using Carrera Unified Formulation – MITC9 shell element, Mech. Adv. Mater. Struct., vol. 25, no. 8, pp. 681–697, 2018. DOI: 10.1080/15376494.2017.1302024.
  • E. Carrera, G. A. Fiordilino, M. Nagaraj, A. Pagani, and M. Montemurro, A global/local approach based On CUF for the accurate and efficient analysis of metallic and composite structures, Eng. Struct., vol. 188, pp. 188–201, 2019. DOI: 10.1016/j.engstruct.2019.03.016.
  • L. Demasi, Mixed plate theories based on the Generalized Unified Formulation, Compos. Struct., vol. 87, no. 1, pp. 12–22, 2009. DOI: 10.1016/j.compstruct.2008.07.012.
  • L. Demasi, Partially layer wise advanced zig zag and HSDT models based on the generalized unified formulation, Eng. Struct., vol. 53, pp. 63–91, 2013. DOI: 10.1016/j.engstruct.2013.01.021.
  • A. J. M. Ferreira, et al., A finite element model using a unified formulation for the analysis of viscoelastic sandwich laminates, Compos. B Eng., vol. 45, no. 1, pp. 1258–1264, 2013. DOI: 10.1016/j.compositesb.2012.05.012.
  • A. Alesadi, M. Galehdari, and S. Shojaee, Free vibration and buckling analysis of composite laminated plates using layerwise models based on isogeometric approach and Carrera unified formulation, Mech. Adv. Mater. Struct., vol. 25, no. 12, pp. 1018–1032, 2018. DOI: 10.1080/15376494.2017.1342883.
  • M. Filippi, E. Carrera, and A. M. Regalli, Layerwise analyses of compact and thin-walled beams made of viscoelastic materials, J. Vib. Acoust., vol. 138, no. 6, pp. 064501, 2016. DOI: 10.1115/1.4034023.
  • M. H. Nagaraj, E. Carrera, and M. Petrolo, Progressive damage analysis of composite laminates subjected to low-velocity impact using 2D layer-wise structural models, Int. J. Non. Linear Mech., vol. 127, pp. 103591, 2020. DOI: 10.1016/j.ijnonlinmec.2020.103591.
  • T. Hassan, et al., Functional nanocomposites and their potential applications: A review, J. Polym. Res., vol. 28, no. 2, pp. 36–57, 2021. DOI: 10.1007/s10965-021-02408-1.
  • H. Hu, L. Onyebueke, and A. Abatan, Characterizing and modeling mechanical properties of nanocomposites-review and evaluation, J. Mineral. Mater. Charact. Eng., vol. 09, no. 04, pp. 275–319, 2010. DOI: 10.4236/jmmce.2010.94022.
  • G. R. Liu, A step-by-step method of rule-of-mixture of fiber- and particle-reinforced composite materials, Compos. Struct., vol. 40, no. 3–4, pp. 313–322, 1997. DOI: 10.1016/S0263-8223(98)00033-6.
  • J. M. Brown, Determination of Hashin–Shtrikman bounds on the isotropic effective elastic moduli of polycrystals of any symmetry, Comput. Geosci., vol. 80, pp. 95–99, 2015. DOI: 10.1016/j.cageo.2015.03.009.
  • J. C. Affdl, and J. L. Kardos, The Halpin-Tsai equations: A review, Polym. Eng. Sci., vol. 16, no. 5, pp. 344–352, 1976. DOI: 10.1002/pen.760160512.
  • M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano., vol. 3, no. 12, pp. 3884–3890, 2009. DOI: 10.1021/nn9010472.
  • T. Chen, G. J. Dvorak, and Y. Benveniste, Mori-Tanaka estimates of the overall elastic moduli of Certain composite materials, J. Appl. Mech., vol. 59, no. 3, pp. 539–546, 1992. DOI: 10.1115/1.2893757.
  • R. Ansari, M. K. Hassanzadeh-Aghdam, and M. J. Mahmoodi, Three-dimensional micromechanical analysis of the CNT waviness influence on the mechanical properties of polymer nanocomposites, Acta Mech., vol. 227, no. 12, pp. 3475–3495, 2016. DOI: 10.1007/s00707-016-1666-6.
  • Y. Zare, Development of Halpin-tsai model for polymer nanocomposites assuming interphase properties and nanofiller size, Polym. Test., vol. 51, pp. 69–73, 2016. DOI: 10.1016/j.polymertesting.2016.02.010.
  • Y. Zare, and K. Y. Rhee, The mechanical behavior of CNT reinforced nanocomposites assuming imperfect interfacial bonding between matrix and nanoparticles and percolation of interphase regions, Compos. Sci. Technol., vol. 144, pp. 18–25, 2017. DOI: 10.1016/j.compscitech.2017.03.012.
  • M. K. Hassanzadeh-Aghdam, R. Ansari, and A. Darvizeh, Thermal expanding behavior of carbon nanotube-shape memory polymer nanocomposites, Mech. Adv. Mater. Struct., vol. 26, no. 22, pp. 1858–1869, 2019. DOI: 10.1080/15376494.2018.1452320.
  • M. Hasanzadeh, R. Ansari, and M. K. Hassanzadeh-Aghdam, Micromechanical elastoplastic analysis of randomly oriented nonstraight carbon nanotube-reinforced polymer nanocomposites, Mech. Adv. Mater. Struct., vol. 26, no. 20, pp. 1700–1710, 2019. DOI: 10.1080/15376494.2018.1444227.
  • M. K. Hassanzadeh-Aghdam, M. J. Mahmoodi, and R. Ansari, Creep performance of CNT polymer nanocomposites-An emphasis on viscoelastic interphase and CNT agglomeration, Compos. B Eng., vol. 168, pp. 274–281, 2019. DOI: 10.1016/j.compositesb.2018.12.093.
  • D. M. Park, J. H. Kim, S. J. Lee, and G. H. Yoon, Analysis of geometrical characteristics of CNT-Al composite using molecular dynamics and the modified rule of mixture (MROM), J. Mech. Sci. Technol., vol. 32, no. 12, pp. 5845–5853, 2018. DOI: 10.1007/s12206-018-1133-5.
  • M. K. Hassanzadeh-Aghdam, R. Ansari, and M. J. Mahmoodi, Thermo-mechanical properties of shape memory polymer nanocomposites reinforced by carbon nanotubes, Mech. Mater., vol. 129, pp. 80–98, 2019. DOI: 10.1016/j.mechmat.2018.11.009.
  • M. K. Hassanzadeh-Aghdam, and J. Jamali, A new form of a Halpin–Tsai micromechanical model for characterizing the mechanical properties of carbon nanotube-reinforced polymer nanocomposites, Bull. Mater. Sci., vol. 42, no. 3, pp. 117, 2019. DOI: 10.1007/s12034-019-1784-6.
  • F. Zhu, C. Park, and GJin Yun, An extended Mori-Tanaka micromechanics model for wavy CNT nanocomposites with interface damage, Mech. Adv. Mater. Struct., vol. 28, no. 3, pp. 295–307, 2021. DOI: 10.1080/15376494.2018.1562135.
  • C. Gao, B. Zhan, and C. Yang, A static/dynamic micromechanical model of graphene-reinforced polymer matrix nanocomposites with consideration of the nanoscale interphase, Mech. Mater., vol. 157, pp. 103838, 2021. DOI: 10.1016/j.mechmat.2021.103838.
  • M. Heshmati, and M. H. Yas, Free vibration analysis of functionally graded CNT-reinforced nanocomposite beam using Eshelby-Mori-Tanaka approach, J. Mech. Sci. Technol., vol. 27, no. 11, pp. 3403–3408, 2013. DOI: 10.1007/s12206-013-0862-8.
  • S. M. Hosseini, and C. Zhang, Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model, Steel Compos. Struct., vol. 27, no. 3, pp. 255–271, 2018. DOI: 10.12989/scs.2018.27.3.255.
  • M. H. G. Rad, F. Shahabian, and S. M. Hosseini, Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model, Steel Compos. Struct., vol. 35, no. 1, pp. 77–92, 2020. DOI: 10.12989/scs.2020.35.1.077.
  • M. Kazemi, M. H. Rad, and, and S. M. Hosseini, Nonlinear dynamic analysis of FG carbon nanotube/epoxy nanocomposite cylinder with large strains assuming particle/matrix interphase using MLPG method, Eng. Anal. Boundary Elem., vol. 132, pp. 126–145, 2021. DOI: 10.1016/j.enganabound.2021.06.028.
  • G. A. Kardomateas, Benchmark three-dimensional elasticity solutions for the buckling of thick orthotropic cylindrical shells, Compos. B Eng., vol. 27, no. 6, pp. 569–580, 1996. DOI: 10.1016/1359-8368(95)00011-9.
  • G. R. Liu, Meshfree Methods: Moving Beyond the Finite Element Method, CRC Press, Boca Raton, FL, 2009.
  • S. M. Hosseini, and C. Zhang, Coupled thermoelastic analysis of an FG multilayer graphene platelets-reinforced nanocomposite cylinder USING meshless GFD method: A modified micromechanical model, Eng. Anal. Boundary Elem., vol. 88, pp. 80–92, 2018. DOI: 10.1016/j.enganabound.2017.12.010.
  • P. Kumar, and J. Srinivas, Elastic and thermal property studies of CNT reinforced epoxy composite with waviness, agglomeration and interphase effects, Int. J. Mater. Eng. Innovat., vol. 9, no. 2, pp. 158, 2018. DOI: 10.1504/IJMATEI.2018.10014996.
  • B. Ruan, and A. M. Jacobi, Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions, Nanoscale Res. Lett., vol. 7, no. 1, pp. 127, 2012. DOI: 10.1186/1556-276X-7-127.
  • K. Yazdchi, and M. Salehi, The effects of CNT waviness on interfacial stress transfer characteristics of CNT/polymer composites, Compos. A Appl. Sci. Manufact., vol. 42, no. 10, pp. 1301–1309, 2011. DOI: 10.1016/j.compositesa.2011.05.013.
  • G. Gkikas, and A. S. Paipetis, Optimisation and analysis of the reinforcement effect of carbon nanotubes in a typical matrix system, Meccanica, vol. 50, no. 2, pp. 461–478, 2015. DOI: 10.1007/s11012-014-9915-z.
  • C. R. Misiego, and R. B. Pipes, Dispersion and its relation to carbon nanotube concentration in polyimide nanocomposites, Compos. Sci. Technol., vol. 85, pp. 43–49, 2013. DOI: 10.1016/j.compscitech.2013.05.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.