536
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

On geometrical configurations of vibration-driven piezoelectric energy harvesters for optimum energy transduction: A critical review

, , , &
Pages 1340-1356 | Received 23 Nov 2021, Accepted 14 Jan 2022, Published online: 04 Feb 2022

References

  • N. von Moos, P. Burkhardt-Holm, and A. Kohler, Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure, Environ. Sci. Technol., vol. 46, no. 20, pp. 11327–11335, 2012. DOI: 10.1021/es302332w.
  • C. Le Quere, et al., Global Carbon Budget 2016, Earth Syst. Sci. Data, vol. 8, no. 2, pp. 605–649, 2016. DOI: 10.5194/essd-8-605-2016.
  • L. Cheng, Q. J. Xiang, Y. L. Liao, and H. W. Zhang, CdS-Based photocatalysts, Energy Environ. Sci., vol. 11, no. 6, pp. 1362–1391, 2018. DOI: 10.1039/C7EE03640J.
  • M. Child, C. Kemfert, D. Bogdanov, and C. Breyer, Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe, Renewable Energy, vol. 139, pp. 80–101, 2019. DOI: 10.1016/j.renene.2019.02.077.
  • N. Tran, M. H. Ghayesh, and M. Arjomandi, Ambient vibration energy harvesters: A review on nonlinear techniques for performance enhancement, Int. J. Eng. Sci., vol. 127, pp. 162–185, 2018. DOI: 10.1016/j.ijengsci.2018.02.003.
  • S. Orrego, et al., Harvesting ambient wind energy with an inverted piezoelectric flag, Appl. Energy, vol. 194, pp. 212–222, 2017. DOI: 10.1016/j.apenergy.2017.03.016.
  • F. R. Sun, Y. D. Yao, G. Z. Li, and X. F. Li, Geothermal energy development by circulating CO2 in a U-shaped closed loop geothermal system, Energy Convers. Manage., vol. 174, pp. 971–982, 2018. DOI: 10.1016/j.enconman.2018.08.094.
  • S. Bandyopadhyay and A. P. Chandrakasan, Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor, IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2199–2215, 2012. DOI: 10.1109/JSSC.2012.2197239.
  • Shad Roundy, PaulKenneth Wright, and J. M. Rabaey, Energy Scavenging for Wireless Sensor Networks: With Special Focus on Vibrations. UC Berkeley USA: Springer, Boston, MA, 2004.
  • S. P. Beeby, M. J. Tudor, and N. M. White, Energy harvesting vibration sources for microsystems applications, Meas. Sci. Technol., vol. 17, no. 12, pp. R175–R195, 2006. DOI: 10.1088/0957-0233/17/12/R01.
  • J. M. Renno, M. F. Daqaq, and D. J. Inman, On the optimal energy harvesting from a vibration source, J. Sound Vib., vol. 320, no. 1-2, pp. 386–405, 2009. DOI: 10.1016/j.jsv.2008.07.029.
  • S. Roundy, P. K. Wright, and J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes, Comput. Commun., vol. 26, no. 11, pp. 1131–1144, 2003. DOI: 10.1016/S0140-3664(02)00248-7.
  • F. A. Silva, Handbook of energy harvesting power supplies and applications [Book News], EEE Ind. Electron. Mag., vol. 10, no. 2, pp. 67–68, 2016. DOI: 10.1109/MIE.2016.2554721.
  • S. P. Beeby, et al., A micro electromagnetic generator for vibration energy harvesting, J. Micromech. Microeng., vol. 17, no. 7, pp. 1257–1265, 2007. DOI: 10.1088/0960-1317/17/7/007.
  • H. P. Zhu, Y. M. Li, W. N. Shen, and S. Y. Zhu, Mechanical and energy-harvesting model for electromagnetic inertial mass dampers, Mech. Syst. Sig. Process., vol. 120, pp. 203–220, 2019. DOI: 10.1016/j.ymssp.2018.10.023.
  • D. Maurath, P. F. Becker, D. Spreemann, and Y. Manoli, Efficient energy harvesting with electromagnetic energy transducers using active low-voltage rectification and maximum power point tracking, IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1369–1380, 2012. DOI: 10.1109/JSSC.2012.2188562.
  • A. Erturk and D. J. Inman, An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations, Smart Mater. Struct., vol. 18, no. 2, p. 025009, 2009. DOI: 10.1088/0964-1726/18/2/025009.
  • H. D. Li, C. Tian, and Z. D. Deng, Energy harvesting from low frequency applications using piezoelectric materials, Appl. Phys. Rev., vol. 1, no. 4, p. 041301, 2014. DOI: 10.1063/1.4900845.
  • C. R. Bowen, H. A. Kim, P. M. Weaver, and S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications, Energy Environ. Sci., vol. 7, no. 1, pp. 25–44, 2014. DOI: 10.1039/C3EE42454E.
  • D. Hoffmann, B. Folkmer, and Y. Manoli, Fabrication, characterization and modelling of electrostatic micro-generators, J. Micromech. Microeng., vol. 19, no. 9, p. 094001, 2009. DOI: 10.1088/0960-1317/19/9/094001.
  • B. C. Yen, and J. H. Lang, A variable-capacitance vibration-to-electric energy harvester, IEEE Trans. Circuits Syst. I., vol. 53, no. 2, pp. 288–295, 2006. DOI: 10.1109/TCSI.2005.856043.
  • S. Boisseau, G. Despesse, and B. A. Seddik, Electrostatic Conversion for Vibration Energy Harvesting, IntechOpen, Institut National des Sciences Appliquées de Lyon, France, 2012.
  • H. A. Sodano, G. Park, D. J. Leo, and D. J. Inman, Use of piezoelectric energy harvesting devices for charging batteries, Smart Struct. Mater., vol. 5050, p. 101, 2003. DOI: 10.1117/12.484247.
  • A. Toprak and O. Tigli, Piezoelectric Energy Harvesting: State-Of-the-Art and Challenges, AIP Publishing, New York, vol. 1, 2014.
  • H. C. Liu, C. J. Tay, C. G. Quan, T. Kobayashi, and C. Lee, Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power, J. Microelectromech. Syst., vol. 20, no. 5, pp. 1131–1142, 2011. DOI: 10.1109/JMEMS.2011.2162488.
  • Z. B. Yang, S. X. Zhou, J. Zu, and D. Inman, High-performance piezoelectric energy harvesters and their applications, Joule., vol. 2, no. 4, pp. 642–697, 2018. DOI: 10.1016/j.joule.2018.03.011.
  • A. Rivadeneyra, et al., Tunable MEMS piezoelectric energy harvesting device, Microsyst. Technol., vol. 22, no. 4, pp. 823–830, 2016. DOI: 10.1007/s00542-015-2455-1.
  • Z. Yang and J. Zu, Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting, Energy Convers. Manage., vol. 122, pp. 321–329, 2016. DOI: 10.1016/j.enconman.2016.05.085.
  • S. Saxena, R. Sharma, and B. D. Pant, Design and development of guided four beam cantilever type MEMS based piezoelectric energy harvester, Microsyst. Technol., vol. 23, no. 6, pp. 1751–1759, 2017. DOI: 10.1007/s00542-016-2940-1.
  • L. Tang, Y. Yang, and C. Soh, Broadband vibration energy harvesting techniques. In: N. Elvin and A. Erturk (eds.), Advances in Energy Harvesting Methods. Springer, New York, pp. 17–61, 2013.
  • L. Tang, Y. Yang, and C. K. Soh, Improving functionality of vibration energy harvesters using magnets, J. Intell. Mater. Syst. Struct., vol. 23, no. 13, pp. 1433–1449, 2012. DOI: 10.1177/1045389X12443016.
  • D. S. Ibrahim, A. G. A. Muthalif, N. H. D. Nordin, and T. Saleh, Comparative study of conventional and magnetically coupled piezoelectric energy harvester to optimize output voltage and bandwidth, Microsyst. Technol., vol. 23, no. 7, pp. 2663–2612, 2017. DOI: 10.1007/s00542-016-3066-1.
  • H. Liu, C. Quan, C. J. Tay, T. Kobayashi, and C. Lee, A MEMS-based piezoelectric cantilever patterned with PZT thin film array for harvesting energy from low frequency vibrations, Phys. Procedia, vol. 19, pp. 129–133, 2011. DOI: 10.1016/j.phpro.2011.06.136.
  • A. R. M. Siddique, S. Mahmud, and B. Van Heyst, Energy conversion by ‘T-shaped’ cantilever type electromagnetic vibration based micro power generator from low frequency vibration sources, Energy Convers. Manage., vol. 133, pp. 399–410, 2017. DOI: 10.1016/j.enconman.2016.10.059.
  • H. S. Kim, J. H. Kim, and J. Kim, A review of piezoelectric energy harvesting based on vibration, Int. J. Precis. Eng. Manuf., vol. 12, no. 6, pp. 1129–1141, 2011. DOI: 10.1007/s12541-011-0151-3.
  • A. Khaligh, P. Zeng, and C. Zheng, Kinetic energy harvesting using piezoelectric and electromagnetic technologies-state of the art, Ieee Trans. Ind. Electron., vol. 57, pp. 850–860, 2010. DOI: 10.1109/TIE.2009.2024652.
  • K. S. Ramadan, D. Sameoto, and S. Evoy, A review of piezoelectric polymers as functional materials for electromechanical transducers, Smart Mater. Struct., vol. 23, no. 3, p. 033001, 2014. DOI: 10.1088/0964-1726/23/3/033001.
  • C. F. Wei, and X. J. Jing, A comprehensive review on vibration energy harvesting: Modelling and realization, Renew. Sustain. Energy Rev., vol. 74, pp. 1–18, 2017. DOI: 10.1016/j.rser.2017.01.073.
  • G. D. Szarka, B. H. Stark, and S. G. Burrow, Review of power conditioning for kinetic energy harvesting systems, IEEE Trans. Power Electron., vol. 27, no. 2, pp. 803–815, 2012. DOI: 10.1109/TPEL.2011.2161675.
  • F. K. Shaikh, and S. Zeadally, Energy harvesting in wireless sensor networks: A comprehensive review, Renew. Sustain. Energy Rev., vol. 55, pp. 1041–1054, 2016. DOI: 10.1016/j.rser.2015.11.010.
  • L. Tang, Y. Yang, and C. K. Soh, toward broadband vibration-based energy harvesting, J. Intell. Mater. Syst. Struct., vol. 21, no. 18, pp. 1867–1897, 2010. DOI: 10.1177/1045389X10390249.
  • D. Zhu, M. J. Tudor, and S. P. Beeby, Strategies for increasing the operating frequency range of vibration energy harvesters: a review, Meas. Sci. Technol., vol. 21, no. 2, p. 022001, 2010. DOI: 10.1088/0957-0233/21/2/022001.
  • S. Khalid, I. Raouf, A. Khan, N. Kim, and H. S. Kim, A review of human-powered energy harvesting for smart electronics: Recent progress and challenges, Int. J. Precis. Eng. Manuf.Green. Tech., vol. 6, no. 4, pp. 821–851, 2019. DOI: 10.1007/s40684-019-00144-y.
  • Y. Zou, L. Bo, and Z. Li, Recent progress in human body energy harvesting for smart bioelectronic system, Fundam. Res., vol. 1, no. 3, pp. 364–382, 2021. DOI: 10.1016/j.fmre.2021.05.002.
  • F. Yildiz, Potential ambient energy-harvesting sources and techniques, J. Technol. Stud., vol. 35, no. 1, 2009. DOI: 10.21061/jots.v35i1.a.6.
  • K. A. Cook-Chennault, N. Thambi, M. A. Bitetto, and E. B. Hameyie, Piezoelectric energy harvesting: A green and clean alternative for sustained power production, Bull. Sci. Technol. Soc., vol. 28, no. 6, pp. 496–509, 2008. DOI: 10.1177/0270467608325374.
  • H. Thorsten and M. Yiannos, CMOS Circuits for Piezoelectric Energy Harvesters, 1st ed. Springer, Netherlands, 2015.
  • D. J. Leo, Engineering Analysis of Smart Material Systems, Wiley, United States, 2007.
  • S. Saadon, and O. Sidek, A review of vibration-based MEMS piezoelectric energy harvesters, Energy Convers. Manage., vol. 52, no. 1, pp. 500–504, 2011. DOI: 10.1016/j.enconman.2010.07.024.
  • Y. B. Jeon, R. Sood, J. H. Jeong, and S. G. Kim, MEMS power generator with transverse mode thin film PZT, Sens. Actuators A. Phys., vol. 122, no. 1, pp. 16–22, 2005. DOI: 10.1016/j.sna.2004.12.032.
  • A. Khan, Z. Abas, HSoo Kim, and I.-K. Oh, Piezoelectric thin films: an integrated review of transducers and energy harvesting, Smart Mater. Struct., vol. 25, no. 5, p. 053002, 2016. DOI: 10.1088/0964-1726/25/5/053002.
  • A. Khan, F. R. Khan, and H. S. Kim, Electro-active paper as a flexible mechanical sensor, actuator and energy harvesting transducer: A review, Sensors, vol. 18, no. 10, p. 3474, 2018. DOI: 10.3390/s18103474.
  • Z. Abas, H. S. Kim, L. Zhai, J. Kim, and J. H. Kim, Possibility of cellulose-based electro-active paper energy scavenging transducer, J. Nanosci. Nanotechnol., vol. 14, no. 10, pp. 7458–7462, 2014. DOI: 10.1166/jnn.2014.9566.
  • W.-S. Chu, D.-M. Chun, and S.-H. Ahn, Research advancement of green technologies, Int. J. Precis. Eng. Manuf., vol. 15, no. 6, pp. 973–977, 2014. DOI: 10.1007/s12541-014-0424-8.
  • A. Khan, Z. Abas, H. S. Kim, and J. Kim, Recent progress on cellulose-based electro-active paper, its hybrid nanocomposites and applications, Sensors (Basel, Switzerland), vol. 16, no. 8, p. 1172, 2016. DOI: 10.3390/s16081172.
  • N. A. Siddiqui, D.-J. Kim, R. A. Overfelt, and B. C. Prorok, Shape optimization of cantilevered devices for piezoelectric energy harvesting. In: B. C. Prorok, L. Starman, J. Hay, and I. I. I. G. Shaw, Eds., MEMS and Nanotechnology, Volume 8: Proceedings of the 2014 Annual Conference on Experimental and Applied Mechanics. Springer International Publishing, Cham, pp. 17–24, 2015.
  • Ramizi Mohamed, MahidurR. Sarker, and Azah Mohamed, An optimization of rectangular shape piezoelectric energy harvesting cantilever beam for micro devices, JAE, vol. 50, no. 4, pp. 537–548, 2016. DOI: 10.3233/JAE-150129.
  • M. I. Friswell, O. Bilgen, S. F. Ali, G. Litak, and S. Adhikari, The effect of noise on the response of a vertical cantilever beam energy harvester, Z Angew. Math. Mech., vol. 95, no. 5, pp. 433–443, 2015. DOI: 10.1002/zamm.201300183.
  • R. Patel, S. McWilliam, and A. A. Popov, A geometric parameter study of piezoelectric coverage on a rectangular cantilever energy harvester, Smart Mater. Struct., vol. 20, no. 8, p. 085004, 2011. DOI: 10.1088/0964-1726/20/8/085004.
  • A. Erturk and D. J. Inman, Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling, J. Sound Vib., vol. 330, no. 10, pp. 2339–2353, 2011. DOI: 10.1016/j.jsv.2010.11.018.
  • M. Ferrari, V. Ferrari, M. Guizzetti, B. Andò, S. Baglio, and C. Trigona, Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters, Sens. Actuators A Phys., vol. 162, no. 2, pp. 425–431, 2010. DOI: 10.1016/j.sna.2010.05.022.
  • S. Priya and D. J. Inman, Energy Harvesting Technologies, Springer Publishing Company, Incorporated, Germany, 2008.
  • Q.-M. Wang, X-h Du, B. Xu, and L. E. Cross, Theoretical analysis of the sensor effect of cantilever piezoelectric benders, J. Appl. Phys., vol. 85, no. 3, pp. 1702–1712, 1999. DOI: 10.1063/1.369314.
  • H. Liu, J. Zhong, C. Lee, S.-W. Lee, and L. Lin, A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications, Appl. Phys. Rev., vol. 5, no. 4, p. 041306, 2018. DOI: 10.1063/1.5074184.
  • Mahesh Peddigari, et al., Effect of elastic modulus of cantilever beam on the performance of unimorph type piezoelectric energy harvester, APL Mater., vol. 6, no. 12, p. 121107, 2018. DOI: 10.1063/1.5070087.
  • S. Roundy, et al., Improving power output for vibration-based energy scavengers, IEEE Pervasive Comput., vol. 4, no. 1, pp. 28–36, 2005. DOI: 10.1109/MPRV.2005.14.
  • J. Baker, S. Roundy, and P. Wright, Alternative Geometries for Increasing Power Density in Vibration Energy Scavenging for Wireless Sensor Networks. In: 3rd International Energy Conversion Engineering Conference, ed: American Institute of Aeronautics and Astronautics, AIAA, California, 2005. DOI: 10.2514/6.2005-5617.
  • S. B. Ayed, F. Najar, and A. Abdelkefi, Shape improvement for piezoelectric energy harvesting applications. In: 2009 3rd International Conference on Signals, Circuits and Systems (SCS), pp. 1–6, 2009.
  • D. Benasciutti, L. Moro, S. Zelenika, and E. Brusa, Vibration energy scavenging via piezoelectric bimorphs of optimized shapes, Microsyst. Technol., vol. 16, no. 5, pp. 657–668, 2010. DOI: 10.1007/s00542-009-1000-5.
  • M. Rosa and C. De Marqui Junior, Modeling and analysis of a piezoelectric energy harvester with varying cross-sectional area, Shock Vib., vol. 2014, pp. 1–9, 2014. DOI: 10.1155/2014/930503.
  • N. A. Siddiqui, D.-J. Kim, R. A. Overfelt, and B. C. Prorok, Electromechanical coupling effects in tapered piezoelectric bimorphs for vibration energy harvesting, Microsyst. Technol., vol. 23, no. 5, pp. 1537–1551, 2017. DOI: 10.1007/s00542-016-3197-4.
  • A. G. A. Muthalif and N. H. D. Nordin, Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: Modeling, simulation and experimental results, Mech. Syst. Signal Process., vol. 54-55, pp. 417–426, 2015. DOI: 10.1016/j.ymssp.2014.07.014.
  • H. Salmani, G. H. Rahimi, and S. A. Hosseini Kordkheili, An exact analytical solution to exponentially tapered piezoelectric energy harvester, Shock Vib., vol. 2015, p. 13, 2015.
  • S. P. Matova, M. Renaud, M. Jambunathan, M. Goedbloed, and R. V. Schaijk, Effect of length/width ratio of tapered beams on the performance of piezoelectric energy harvesters, Smart Mater. Struct., vol. 22, no. 7, p. 075015, 2013. DOI: 10.1088/0964-1726/22/7/075015.
  • W. U. Syed, A. Bojesomo, and I. M. Elfadel, Electromechanical model of a tapered piezoelectric energy harvester, IEEE Sensors J., vol. 18, no. 14, pp. 5853–5862, 2018. DOI: 10.1109/JSEN.2018.2841359.
  • A. H. Alameh, M. Gratuze, and F. Nabki, Impact of geometry on the performance of cantilever-based piezoelectric vibration energy harvesters, IEEE Sensors J., vol. 19, no. 22, pp. 10316–10326, 2019. DOI: 10.1109/JSEN.2019.2932341.
  • D. S. Ibrahim, S. Beibei, A. U. Jibia, O. A. Oluseyi, U. Sharif, and A. Y. Abdullahi, Optimal strain-deflection analyses of a wedge edged beam for enhanced vibration energy scavenging in patch-like harvester, Mech. Based Des. Struct. Mach., pp. 1–23, 2021. DOI: 10.1080/15397734.2021.1894947.
  • S. Paquin, and Y. St-Amant, Improving the performance of a piezoelectric energy harvester using a variable thickness beam, Smart Mater. Struct., vol. 19, no. 10, p. 105020, 2010. DOI: 10.1088/0964-1726/19/10/105020.
  • A. R. Biswal, T. Roy, R. K. Behera, P. K. Parida, and S. K. Pradhan, Finite element based modeling of a piezolaminated tapered beam for voltage generation, Procedia Eng., vol. 144, pp. 613–620, 2016. DOI: 10.1016/j.proeng.2016.05.051.
  • J. Zhang, X. Xie, G. Song, G. Du, and D. Liu, A study on a near-shore cantilevered sea wave energy harvester with a variable cross section, Energy Sci. Eng., vol. 7, no. 6, pp. 3174–3185, 2019. DOI: 10.1002/ese3.489.
  • D. S. Ibrahim, S. Beibei, O. A. Oluseyi, and U. Sharif, Performance analysis of width and thickness tapered geometries on electrical power harvested from a unimorph piezoelectric cantilever beam, In: 2020 IEEE 3rd International Conference on Electronics Technology (ICET), pp. 100–104, 2020. DOI: 10.1109/ICET49382.2020.9119588.
  • S. Kundu and H. B. Nemade, Piezoelectric vibration energy harvester with tapered substrate thickness for uniform stress. Microsyst. Technol., vol. 27, pp. 105–113, 2020.
  • X. D. Xie, A. Carpinteri, and Q. Wang, A theoretical model for a piezoelectric energy harvester with a tapered shape, Eng. Struct., vol. 144, pp. 19–25, 2017. DOI: 10.1016/j.engstruct.2017.04.050.
  • S. S. Raju, M. Umapathy, and G. Uma, High-output piezoelectric energy harvester using tapered beam with cavity, J. Intell. Mater. Syst. Struct., vol. 29, no. 5, pp. 800–815, 2018. DOI: 10.1177/1045389X17721044.
  • S. S. Raju, M. Umapathy, and G. Uma, Performance improvement of piezoelectric energy harvester using non-uniform beam with cavity, Ferroelectrics., vol. 540, no. 1, pp. 193–211, 2019. DOI: 10.1080/00150193.2019.1611096.
  • S. S. Raju, M. Umapathy, and G. Uma, Design and analysis of high output piezoelectric energy harvester using non uniform beam, Mech. Adv. Mater. Struct., vol. 27, no. 3, pp. 218–227, 2020. DOI: 10.1080/15376494.2018.1472341.
  • L. Tang, Y. Yang, and L. Zhao, Magnetic coupled cantilever piezoelectric energy harvester, ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, pp. 811–818, 2012. DOI: 10.1115/SMASIS2012-8041.
  • A. Erturk, J. M. Renno, and D. J. Inman, Modeling of Piezoelectric Energy Harvesting from an L-shaped Beam-mass Structure with an Application to UAVs, J. Intell. Mater. Syst. Struct., vol. 20, no. 5, pp. 529–544, 2009. DOI: 10.1177/1045389X08098096.
  • R. Sriramdas, S. Chiplunkar, R. M. Cuduvally, and R. Pratap, Performance enhancement of piezoelectric energy harvesters using multilayer and multistep beam configurations, IEEE Sens. J., vol. 15, no. 6, pp. 3338–3348, 2015. DOI: 10.1109/JSEN.2014.2387882.
  • M. A. Karami, and D. Inman, Vibration Analysis of the Zigzag Micro-Structure for Energy Harvesting, Vol. 7288. SPIE, United States, 2009.
  • M. A. Karami, and D. J. Inman, Parametric study of zigzag microstructure for vibrational energy harvesting, J. Microelectromech. Syst., vol. 21, no. 1, pp. 145–160, 2012. DOI: 10.1109/JMEMS.2011.2171321.
  • S. Saadon and O. Sidek, Shape optimization of cantilever-based MEMS piezoelectric energy harvester for low frequency applications, In: 2013 UKSim 15th International Conference on Computer Modelling and Simulation, pp. 202–208, 2013.
  • E. E. Aktakka, and K. Najafi, Three-axis piezoelectric vibration energy harvester, In: 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 1141–1144, 2015. DOI: 10.1109/MEMSYS.2015.7051166.
  • H. Liu, C. Lee, T. Kobayashi, C. J. Tay, and C. Quan, A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz, Microsyst. Technol., vol. 18, no. 4, pp. 497–506, 2012. DOI: 10.1007/s00542-012-1424-1.
  • H. Song, et al., Ultra-low resonant piezoelectric MEMS energy harvester with high power density, J. Microelectromech. Syst., vol. 26, no. 6, pp. 1226–1234, 2017. DOI: 10.1109/JMEMS.2017.2728821.
  • L. J. Gong, Q. S. Pan, W. Li, G. Y. Yan, Y. B. Liu, and Z. H. Feng, Harvesting vibration energy using two modal vibrations of a folded piezoelectric device, Appl. Phys. Lett., vol. 107, p. 33904, 2015.
  • X. Dong, Z. Yi, L. Kong, Y. Tian, J. Liu, and B. Yang, Design, fabrication, and characterization of bimorph micromachined harvester with asymmetrical PZT films, J. Microelectromech. Syst., vol. 28, no. 4, pp. 700–706, 2019. DOI: 10.1109/JMEMS.2019.2920213.
  • S. Nabavi and L. Zhang, T-Shaped piezoelectric structure for high-performance MEMS vibration energy harvesting, J. Microelectromech. Syst., vol. 28, no. 6, pp. 1100–1112, 2019. DOI: 10.1109/JMEMS.2019.2942291.
  • H. Rouhollah and H. Mohsen, Improvements in energy harvesting capabilities by using different shapes of piezoelectric bimorphs, J. Micromech. Microeng., vol. 25, p. 125008, 2015.
  • R. Hosseini and M. Hamedi, An investigation into resonant frequency of trapezoidal V-shaped cantilever piezoelectric energy harvester, Microsyst. Technol., vol. 22, no. 5, pp. 1127–1134, 2016. DOI: 10.1007/s00542-015-2583-7.
  • K. M. Tsuruta, D. A. Rade, R. M. Finzi Neto, and A. A. Cavalini, Experimental evaluation of a cruciform piezoelectric energy harvester, Mech. Syst. Sig. Process., vol. 79, pp. 141–148, 2016. DOI: 10.1016/j.ymssp.2016.03.005.
  • N. Sampath, and D. Ezhilarasi, Analysis of cross shaped cantilever with C shaped proof mass for vibration energy harvesting, Mater. Today: Proc., vol. 5, pp. 21343–21349, 2018.
  • Z. Yang, Y. Q. Wang, L. Zuo, and J. Zu, Introducing arc-shaped piezoelectric elements into energy harvesters, Energy Convers. Manage., vol. 148, pp. 260–266, 2017. DOI: 10.1016/j.enconman.2017.05.073.
  • D. S. Ibrahim, B. B. Sun, U. Sharif, and O. A. Oluseyi, Modeling and simulation of a gauge shaped beam coupled with macro fiber composite for energy harvesting application, IOP Conf. Ser.: Mater. Sci. Eng., vol. 856, no. 1, p. 012010, 2020. DOI: 10.1088/1757-899X/856/1/012010.
  • D. S. Ibrahim, S. Beibei, S. Fatai, O. A. Oluseyi, and U. Sharif, Numerical and experimental study of a gauge-shaped beam for improved performance of piezoelectric energy harvester, Microsyst. Technol., vol. 27, no. 12, pp. 4253–4268, 2021. DOI: 10.1007/s00542-021-05219-y.
  • J. Wu, X. Chen, Z. Chu, W. Shi, Y. Yu, and S. Dong, A barbell-shaped high-temperature piezoelectric vibration energy harvester based on BiScO3-PbTiO3 ceramic, Appl. Phys. Lett., vol. 109, no. 17, pp. 173901, 2016. DOI: 10.1063/1.4966125.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.