471
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Thermal-vibration aging of fiber-reinforced polymer cylindrical shells with polyurea coating: Theoretical and experimental studies

ORCID Icon, , , , , , & show all
Pages 1368-1383 | Received 08 Nov 2021, Accepted 19 Jan 2022, Published online: 04 Feb 2022

References

  • H. S. Shen and H. Wang, Thermal postbuckling of functionally graded fiber reinforced composite cylindrical shells surrounded by an elastic medium, Compos. Struct., vol. 102, pp. 250–260, 2013. DOI: 10.1016/j.compstruct.2013.03.011.
  • P. Kumari and S. Kar, Static behavior of arbitrarily supported composite laminated cylindrical shell panels: An analytical 3D elasticity approach, Compos. Struct., vol. 207, pp. 949–965, 2019. DOI: 10.1016/j.compstruct.2018.09.035.
  • H. Li, et al., Nonlinear vibrations of fiber-reinforced composite cylindrical shells with bolt loosening boundary conditions, J. Sound Vib., vol. 496, pp. 115935, 2021. DOI: 10.1016/j.jsv.2021.115935.
  • G. Cristobal, W. Jodi, T. Irina, and Y. Liu, Vibratory behaviour of glass fibre reinforced polymer (GFRP) interleaved with nylon nanofibers, Compos. Struct., vol. 176, pp. 923–932, 2017.
  • S. Dong, Q. Wang, and B. Qin, A simple first-order shear deformation shell theory for vibration analysis of composite laminated open cylindrical shells with general boundary conditions, Compos. Struct., vol. 184, pp. 211–232, 2017.
  • Y. H. Dong, B. Zhu, Y. Wang, Y. H. Li, and J. Yang, Nonlinear free vibration of graded graphene reinforced cylindrical shells: Effects of spinning motion and axial load, J. Sound Vib., vol. 437, pp. 79–96, 2018. DOI: 10.1016/j.jsv.2018.08.036.
  • X. Wang, Z. Q. Peng, Z. S. Wu, and S. P. Sun, High-performance composite bridge deck with prestressed basalt fiber-reinforced polymer shell and concrete, Eng. Struct., vol. 201, pp. 109852, 2019. DOI: 10.1016/j.engstruct.2019.109852.
  • H. Li, et al., Nonlinear vibration characteristics of fibre reinforced composite cylindrical shells in thermal environment, Mech. Syst. Signal Pr., vol. 156, pp. 107665, 2021. DOI: 10.1016/j.ymssp.2021.107665.
  • H. Li, et al., Nonlinear vibration analysis of fiber reinforced composite cylindrical shells with partial constrained layer damping treatment, Thin Wall Struct., vol. 157, pp. 107000, 2020. DOI: 10.1016/j.tws.2020.107000.
  • M. Kireitseu, D. Hui, and G. Tomlinson, Advanced shock-resistant and vibration damping of nanoparticle-reinforced composite material, Compos. Part B-Eng., vol. 39, no. 1, pp. 128–138, 2008. DOI: 10.1016/j.compositesb.2007.03.004.
  • X. Y. Lv, R. G. Wang, W. B. Liu, and L. Jiang, Surface and interface properties of carbon fiber composites under cyclical aging, Appl. Surf. Sci., vol. 257, no. 24, pp. 10459–10464, 2011. DOI: 10.1016/j.apsusc.2011.06.147.
  • H. Li, H. S. Wu, T. N. Zhang, B. C. Wen, and Z. W. Guan, A nonlinear dynamic model of fiber-reinforced composite thin plate with temperature dependence in thermal environment, Compos. Part B-Eng., vol. 162, pp. 206–218, 2019. DOI: 10.1016/j.compositesb.2018.10.070.
  • D. Mohotti, T. Ngo, S. N. Raman, M. Ali, and P. Mendis, Plastic deformation of polyurea coated composite aluminium plates subjected to low velocity impact, Mater. Design., vol. 56, pp. 696–713, 2014. DOI: 10.1016/j.matdes.2013.11.063.
  • M. Duda, J. Pach, and G. Lesiuk, Influence of polyurea composite coating on selected mechanical properties of AISI 304 Steel, Materials., vol. 12, no. 19, pp. 3137, 2019. DOI: 10.3390/ma12193137.
  • M. Tripathi, S. Parthasarathy, D. Kumar, P. Chandel, P. Sharma, and P. K. Roy, Strain rate sensitivity of polyurea coatings: Viscous and elastic contributions, Polymer Test., vol. 86, pp. 106488, 2020. DOI: 10.1016/j.polymertesting.2020.106488.
  • N. Iqbal, P. K. Sharma, D. Kumar, and P. K. Roy, Protective polyurea coatings for enhanced blast survivability of concrete, Constr. Build Mater., vol. 175, pp. 682–690, 2018. DOI: 10.1016/j.conbuildmat.2018.04.204.
  • Y. S. Chen, et al., Polyurea coating for foamed concrete panel An efficient way to resist explosion, Def. Technol., vol. 16, no. 1, pp. 136–149, 2020. DOI: 10.1016/j.dt.2019.06.010.
  • P. Ribeiro, and E. Jansen, Non-linear vibrations of laminated cylindrical shallow shells under thermomechanical loading[J], J. Sound Vib., vol. 315, no. 3, pp. 626–640, 2008. DOI: 10.1016/j.jsv.2008.01.017.
  • R. Kumar, B. K. Mishra, and S. C. Jain, Static and dynamic analysis of smart cylindrical shell, Finite Elem. Anal. Des., vol. 45, no. 1, pp. 13–24, 2008. DOI: 10.1016/j.finel.2008.07.005.
  • M. Rafiee, M. Mohammadi, B. S. Aragh, and H. Yaghoobi, Nonlinear free and forced thermo-electro-aero-elastic vibration and dynamic response of piezoelectric functionally graded laminated composite shells Part I: Theory and analytical solutions, Compos. Struct., vol. 103, no. 9, pp. 179–187, 2013. DOI: 10.1016/j.compstruct.2012.12.053.
  • M. Rafiee, M. Mohammadi, B. S. Aragh, and H. Yaghoobi, Nonlinear free and forced thermo-electro-aero-elastic vibration and dynamic response of piezoelectric functionally graded laminated composite shells Part II: Numerical results, Compos Struct., vol. 103, no. 9, pp. 188–196, 2013. DOI: 10.1016/j.compstruct.2012.12.050.
  • Z. G. Song, L. W. Zhang, and K. M. Liew, Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments, Int. J. Mech. Sci., vol. 115–116, pp. 339–347, 2016. DOI: 10.1016/j.ijmecsci.2016.06.020.
  • D. G. Ninh, and D. H. Bich, Characteristics of nonlinear vibration of nanocomposite cylindrical shells with piezoelectric actuators under thermo-mechanical loads, Aerosp. Sci. Technol., vol. 77, no. 9, pp. 595–609, 2018. DOI: 10.1016/j.ast.2018.04.008.
  • D. G. Ninh, and N. D. Tien, Investigation for electro-thermo-mechanical vibration of nanocomposite cylindrical shells with an internal fluid flow, Aerosp. Sci. Technol., vol. 92, pp. 501–519, 2019. DOI: 10.1016/j.ast.2019.06.023.
  • K. Foroutan, H. Ahmadi, and E. Carrera, Nonlinear vibration of imperfect FG-CNTRC cylindrical panels under external pressure in the thermal environment, Compos Struct., vol. 227, pp. 111310, 2019. DOI: 10.1016/j.compstruct.2019.111310.
  • Y. Heydarpour, et al., Application of the hybrid DQ-Heaviside-NURBS method for dynamic analysis of FG-GPLRC cylindrical shells subjected to impulse load, Thin Wall Struct., vol. 155, pp. 106914, 2020. DOI: 10.1016/j.tws.2020.106914.
  • M. Cho, and H. S. Kim, Iterative free-edge stress analysis of composite laminates under extension, bending, twisting and thermal loadings, Int. J. Solids Struct., vol. 37, no. 3, pp. 435–459, 2000. DOI: 10.1016/S0020-7683(99)00014-1.
  • H. S. Kim, X. Zhou, and A. Chattopadhyay, Interlaminar stress analysis of shell structures with piezoelectric patch including thermal loading, AIAA J., vol. 40, no. 12, pp. 2517–2525, 2002. DOI: 10.2514/2.1596.
  • B. Huang, J. Wang, and H. S. Kim, A stress function based model for transient thermal stresses of composite laminates in various time-variant thermal environments, Int. J. Mech. Sci., vol. 180, pp. 105651, 2020. DOI: 10.1016/j.ijmecsci.2020.105651.
  • G. Cristobal, J. Alfonso, Z. Oscar, and B. Publio, Detection and quantification of delamination failures in marine composite bulkheads via vibration energy variations, Sensors-Basel., vol. 21, pp. 2843, 2021.
  • K. M. Liew, J. Yang, and Y. F. Wu, Nonlinear vibration of a coating-FGM-substrate cylindrical panel subjected to a temperature gradient, Comput. Meth Appl. Mech. Eng., vol. 195, no. 9–12, pp. 1007–1026, 2006. DOI: 10.1016/j.cma.2005.04.001.
  • M. G. Sainsbury, and R. S. Masti, Vibration damping of cylindrical shells using strain-energy-based distribution of an add-on viscoelastic treatment, Finite Elem Anal Des., vol. 43, no. 3, pp. 175–192, 2007. DOI: 10.1016/j.finel.2006.09.003.
  • A. H. Sofiyev, and N. Kuruoglu, Torsional vibration and buckling of the cylindrical shell with functionally graded coatings surrounded by an elastic medium, Compos. Part .B-Eng., vol. 45, no. 1, pp. 1133–1142, 2013. DOI: 10.1016/j.compositesb.2012.09.046.
  • W. Sun, M. Zhu, and Z. Wang, Free vibration analysis of a hard-coating cantilever cylindrical shell with elastic constraints, Aerosp. Sci. Technol., vol. 63, pp. 232–244, 2017. DOI: 10.1016/j.ast.2017.01.002.
  • S. X. Liu, M. S. Zou, L. W. Jiang, and S. Y. Zou, Vibratory response and acoustic radiation of a finite cylindrical shell partially covered with circumferential compliant layers, Appl. Acoust., vol. 141, pp. 188–197, 2018. DOI: 10.1016/j.apacoust.2018.07.012.
  • Y. Zhang, W. Zhang, J. Yang, and Q. K. Han, Analytical analysis of forced vibration of the hard-coating cylindrical shell with material nonlinearity and elastic constraint, Compos Struct., vol. 187, pp. 281–293, 2018. DOI: 10.1016/j.compstruct.2017.12.045.
  • Y. Zhang, J. Yang, W. Sun, and H. Song, A nonlinear analytical formula for forced vibration analysis of the hard-coating cylindrical shell based on the strain energy density principle, Aerosp. Sci. Technol., vol. 92, pp. 326–336, 2019. DOI: 10.1016/j.ast.2019.06.005.
  • Q. He, H. L. Dai, C. C. Cheng, and Z. Zhang, Investigation on dynamic hygro-thermo-elastic response of cylindrical shells with a porous microcapsule coating, Compos Struct., vol. 243, pp. 112146, 2020. DOI: 10.1016/j.compstruct.2020.112146.
  • D. X. Du, W. Sun, X. F. Yan, and K. P. Xu, Nonlinear vibration analysis of the rotating hard-coating cylindrical shell based on the domain decomposition method, Thin Wall Struct., vol. 159, pp. 107236, 2021. DOI: 10.1016/j.tws.2020.107236.
  • H. Li, Z. X. Zhou, H. Sun, W. Sun, and B. C. Wen, Theoretical study on the influence of hard coating on vibration characteristics of fiber-reinforced composite thin shell, Coatings., vol. 8, no. 3, pp. 87–36, 2018. DOI: 10.3390/coatings8030087.
  • K. Chung, J. C. Seferis, and J. D. Nam, Investigation of thermal degradation behavior of polymeric composites: prediction of thermal cycling effect from isothermal data, Compos. Part A.-Appl. S., vol. 31, no. 9, pp. 945–957, 2000. DOI: 10.1016/S1359-835X(00)00043-9.
  • J. D. D. Melo, and D. W. Radford, Time and temperature dependence of the viscoelastic properties of CFRP by dynamic mechanical analysis, Compos. Struct., vol. 70, no. 2, pp. 240–253, 2005. DOI: 10.1016/j.compstruct.2004.08.025.
  • M. Akay, and G. R. Spratt, Evaluation of thermal ageing of a carbon fibre reinforced bismalemide, Compos. Sci. Technol., vol. 68, no. 15–16, pp. 3081–3086, 2008. DOI: 10.1016/j.compscitech.2008.07.002.
  • N. Rasoldier, et al., Model systems for thermo-oxidised epoxy composite matrices, Compos. Part. A.-Appl. S., vol. 39, no. 9, pp. 1522–1529, 2008. DOI: 10.1016/j.compositesa.2008.05.016.
  • P. Upadhyaya, S. Singh, and S. Roy, A mechanism-based multi-scale model for predicting thermo-oxidative degradation in high temperature polymer matrix composites, Compos. Sci. Technol., vol. 71, no. 10, pp. 1309–1315, 2011. DOI: 10.1016/j.compscitech.2011.04.018.
  • S. B. Shi, L. X. Gu, J. Liang, G. D. Fang, C. L. Gong, and C. X. Dai, A mesomechanical model for predicting the degradation in stiffness of FRP composites subjected to combined thermal and mechanical loading, Mater. Design., vol. 89, pp. 1079–1085, 2016. DOI: 10.1016/j.matdes.2015.10.060.
  • A. D. S. Rios, W. F. D. A. Júnior, E. P. D. Moura, E. P. D. Deus, and J. P. D. A. Feitosa, Effects of accelerated aging on mechanical, thermal and morphological behavior of polyurethane/epoxy/fiberglass composites, Polym. Test., vol. 50, pp. 152–163, 2016.
  • R. A. Hawileh, J. A. Abdalla, S. S. Hasan, M. B. Ziyada, and A. Abu-Obeidah, Models for predicting elastic modulus and tensile strength of carbon, basalt and hybrid carbon-basalt FRP laminates at elevated temperatures, Constr. Build Mater., vol. 114, pp. 364–373, 2016. DOI: 10.1016/j.conbuildmat.2016.03.175.
  • D. F. Wu, Y. W. Wang, L. Shang, H. T. Wang, and Y. Pu, Experimental and computational investigations of thermal modal parameters for a plate-structure under 1200 °C high temperature environment, Measurement., vol. 94, pp. 80–91, 2016. DOI: 10.1016/j.measurement.2016.07.078.
  • D. F. Wu, Y. W. Wang, S. Lan, Y. Pu, and Z. T. Gao, Thermo-mechanical properties of C/SiC composite structure under extremely high temperature environment up to 1500 °C, Compos Part B-Eng., vol. 90, pp. 424–431, 2016. DOI: 10.1016/j.compositesb.2015.12.047.
  • H. Li, T. N. Zhang, Z. L. Li, B. C. Wen, and Z. W. Guan, Modeling of the nonlinear dynamic degradation characteristics of fiber-reinforced composite thin plates, Nonlinear Dyn., vol. 98, no. 1, pp. 819–839, 2019. DOI: 10.1007/s11071-019-05232-x.
  • H. Li, P. C. Xue, W. C. Rong, X. P. Li, and B. C. Wen, Identification of mechanical parameters of fiber-reinforced composites by frequency response function approximation method, Sci. Progress., vol. 103, pp. 1–26, 2019.
  • H. Li, D. M. Liu, P. C. Li, J. Zhao, Q. K. Han, and Q. S. Wang, A unified vibration modeling and dynamic analysis of FRP-FGPGP cylindrical shells under arbitrary boundary conditions, Appl. Math. Model., vol. 97, pp. 69–80, 2021. DOI: 10.1016/j.apm.2021.03.054.
  • H. Li, Z. J. Gao, J. Zhao, H. Ma, Q. K. Han, and J. G. Liu, Vibration suppression effect of porous graphene platelet coating on fiber reinforced polymer composite plate with viscoelastic damping boundary conditions resting on viscoelastic foundation, Eng. Struct., vol. 237, pp. 112167, 2021. DOI: 10.1016/j.engstruct.2021.112167.
  • S. W. Yang, Y. X. Hao, W. Zhang, L. Zhang, and L. T. Liu, Free vibration and buckling of eccentric rotating FG-GPLRC cylindrical shell using first-order shear deformation theory, Compos. Struct., vol. 263, pp. 113728, 2021. DOI: 10.1016/j.compstruct.2021.113728.
  • M. H. Kargarnovin, and M. Hashemi, Free vibration analysis of multilayered composite cylinder consisting fibers with variable volume fraction, Compos Struct., vol. 94, no. 3, pp. 931–944, 2012. DOI: 10.1016/j.compstruct.2011.11.014.
  • H. Li, F. Pang, X. Miao, S. Gao, and F. Liu, A semi analytical method for free vibration analysis of composite laminated cylindrical and spherical shells with complex boundary conditions, Thin Wall Struct., vol. 136, pp. 200–220, 2019. DOI: 10.1016/j.tws.2018.12.009.
  • J. C. Liu, X. W. Deng, Q. S. Wang, R. Zhong, R. Xiong, and J. Zhao, A unified modeling method for dynamic analysis of GPL-reinforced FGP plate resting on Winkler–Pasternak foundation with elastic boundary conditions, Compos. Struct., vol. 244, pp. 112217, 2020. DOI: 10.1016/j.compstruct.2020.112217.
  • Y. G. Chen, J. Y. Zhai, and Q. K. Han, Vibration and damping analysis of the bladed disk with damping hard coating on blades, Aerosp. Sci. Technol., vol. 58, pp. 248–257, 2016. DOI: 10.1016/j.ast.2016.08.016.
  • R. Akbari, R. Hedayatzadeh, K. Ziarati, and B. Hassanizadeh, A multi-objective artificial bee colony algorithm, Swarm Evol. Comput., vol. 2, pp. 39–52, 2012. DOI: 10.1016/j.swevo.2011.08.001.
  • D. Sedira, Y. Gabi, A. Kedous-Lebouc, K. Jacob, B. Wolter, and B. Straß, ABC method for hysteresis model parameters identification, J. Magn. Magn. Mater., vol. 505, pp. 166724, 2020. DOI: 10.1016/j.jmmm.2020.166724.
  • H. Li, P. C. Xue, Z. W. Guan, Q. K. Han, and B. C. Wen, A new nonlinear vibration model of fiber-reinforced composite thin plate with amplitude-dependent property, Nonlinear Dyn., vol. 94, no. 3, pp. 2219–2241, 2018. DOI: 10.1007/s11071-018-4486-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.