121
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Acoustic waves in functionally graded rods with periodic longitudinal inhomogeneity

ORCID Icon
Pages 1410-1416 | Received 05 Dec 2021, Accepted 19 Jan 2022, Published online: 18 Feb 2022

References

  • Y. Miyamoto, M. Koizumi, and O. Yamada, High-pressure self-combustion sintering for ceramics, J. Am. Ceramic Soc., vol. 67, no. 11, pp. 224–225, 1984.
  • A. Gupta, and M. Talha, Recent development in modeling and analysis of functionally graded materials and structures, Progress Aerospace Sci., vol. 79, pp. 1–14, 2015. DOI: 10.1016/j.paerosci.2015.07.001.
  • Z. Li, J. Yu, X. Zhang, and L. Elmaimouni, Guided wave propagation in functionally graded fractional viscoelastic plates: A quadrature-free Legendre polynomial method. Mech. Adv. Mater. Struct., pp. 1–21, 2020. DOI: 10.1080/15376494.2020.1860273.
  • D. W. Hutmacher, M. Sittinger, and M. V. Risbud, Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems, Trends Biotechnol., vol. 22, no. 7, pp. 354–362, 2004. DOI: 10.1016/j.tibtech.2004.05.005.
  • X. Zhang, C. Zhang, J. Yu, and J. Luo, Full dispersion and characteristics of complex guided waves in functionally graded piezoelectric plates, J. Intell. Mater. Syst. Struct., vol. 30, no. 10, pp. 1466–1480, 2019. DOI: 10.1177/1045389X19836168.
  • Y. Parhizkar, and M. Ghannad, Electro-elastic analysis of functionally graded piezoelectric variable thickness cylindrical shells using a first-order electric potential theory and perturbation technique, J. Intell. Mater. Syst. Struct., vol. 31, no. 17, pp. 2044–2068, 2020. DOI: 10.1177/1045389X20935627.
  • A. Safari-Kahnaki, S. M. Hosseini, and M. Tahani, Thermal shock analysis and thermo-elastic stress waves in functionally graded thick hollow cylinders using analytical method, Int. J. Mech. Mater. Des., vol. 7, no. 3, pp. 167–184, 2011. DOI: 10.1007/s10999-011-9157-3.
  • B. Wu, Y. P. Su, D. Y. Liu, W. Q. Chen, and C. Z. Zhang, On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders, J. Sound Vibr., vol. 412, pp. 17–47, 2018.
  • S. Naila, and A. Ghazala, Solitary dynamics of longitudinal wave equation arises in magneto-electro-elastic circular rod, Modern Phys. Let. B., vol. 35, no. 5, pp. 2150086, 2021. Paper 2150086. DOI: 10.1142/S021798492150086X.
  • S. V. Kuznetsov, Cauchy formalism for Lamb waves in functionally graded plates, J. Vibr. Control., vol. 25, no. 6, pp. 1227–1232, 2019. DOI: 10.1177/1077546318815376.
  • S. V. Kuznetsov, Lamb waves in stratified and functionally graded plates: discrepancy, similarity, and convergence, Waves Random Complex Media., vol. 31, no. 6, pp. 1540–1549, 2021. DOI: 10.1080/17455030.2019.1683257.
  • A. Ilyashenko, et al., SH waves in anisotropic (monoclinic) media, Z Angew. Math. Phys., vol. 69, no. 1, pp. 17. 2018. DOI: 10.1007/s00033-018-0916-y.
  • B. A. Auld, 1990. Acoustic Fields and Waves in Solids. Vol. 2, 2nd ed., Krieger Publishing Company, Malabar, Florida. ISBN-13: 978-0894644900.
  • D. Royer, and E. Dieulesaint, 2000. Elastic Waves in Solids. Vol. I. Springer-Verlag, New York. ISBN-3-540-65932-3.
  • I. Djeran-Maigre, et al., Velocities, dispersion, and energy of SH-waves in anisotropic laminated plates, Acoust. Phys., vol. 60, no. 2, pp. 200–207, 2014. DOI: 10.1134/S106377101402002X.
  • A. Shuvalov, A sextic formalism for three-dimensional elastodynamics of cylindrically anisotropic radially inhomogeneous materials, Proc. R Soc. Lond. A., vol. 459, no. 2035, pp. 1611–1639, 2003. DOI: 10.1098/rspa.2002.1075.
  • C. Baron, and S. Naili, Propagation of elastic waves in a fluid-loaded anisotropic functionally graded waveguide: application to ultrasound characterization, J. Acoust. Soc. Am., vol. 127, no. 3, pp. 1307–1317, 2010. DOI: 10.1121/1.3292949.
  • C. Baron, Propagation of elastic waves in an anisotropic functionally graded hollow cylinder in vacuum, Ultrasonics., vol. 51, no. 2, pp. 123–130, 2011. DOI: 10.1016/j.ultras.2010.07.001.
  • C. X. Xue, E. Pan, and S. Y. Zhang, Solitary waves in a magneto-electro-elastic circular rod, Smart Mater. Struct., vol. 20, no. 10, pp. 105010, 2011. DOI: 10.1088/0964-1726/20/10/105010.
  • C.-X. Xue, and E. Pan, On the longitudinal wave along a functionally graded magneto-electro-elastic rod, Int. J. Eng. Sci., vol. 62, pp. 48–55, 2013. DOI: 10.1016/j.ijengsci.2012.08.004.
  • E. Zarezadeh, V. Hosseini, and A. Hadi, Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory, Mech. Based Design Struct. Mach., vol. 48, no. 4, pp. 480–495, 2020. DOI: 10.1080/15397734.2019.1642766.
  • J. G. Yu, and B. Wu, Circumferential wave in magneto-electro-elastic functionally graded cylindrical curved plates, Europ. J. Mech. Ser. A/Solids., vol. 28, no. 3, pp. 560–568, 2009. DOI: 10.1016/j.euromechsol.2008.07.011.
  • L. Elmaimouni, J. E. Lefebvre, A. Raherison, and F. E. Ratolojanahary, Acoustical guided waves in inhomogeneous cylindrical materials, Ferroelectrics., vol. 372, no. 1, pp. 115–123, 2008. DOI: 10.1080/00150190802382074.
  • L. Elmaimouni, J. E. Lefebvre, V. Zhang, and T. Gryba, Guided waves in radially graded cylinders: a polynomial approach, NDT E Int., vol. 38, no. 5, pp. 344–353, 2005. DOI: 10.1016/j.ndteint.2004.10.004.
  • Q. Wang, and V. K. Varadan, Longitudinal wave propagation in piezoelectric coupled rods, Smart Mater. Struct., vol. 11, no. 1, pp. 48–54, 2002. DOI: 10.1088/0964-1726/11/1/305.
  • S. T. Quek, and Q. Wang, On dispersion relations in piezoelectric coupled plate structures, Smart Mater. Struc., vol. 10, pp. 859–867, 2000. DOI: 10.1088/0964-1726/9/6/317.
  • X. Han, G. R. Liu, Z. C. Xi, and K. Y. Lam, Characteristics of waves in a functionally graded cylinder, Int. J. Numer. Meth. Eng., vol. 53, no. 3, pp. 653–676, 2002. DOI: 10.1002/nme.305.
  • ZhL. Chen, and W. Q. Chen, Torsional wave propagation in a circumferentially poled piezoelectric cylindrical transducer with unattached electrodes, IEEE Trans Ultrason Ferroelectr Freq Control., vol. 57, no. 5, pp. 1230–1236, 2010. DOI: 10.1109/tuffc.2010.1536.
  • F. Honarvar, E. Enjilela, A. Sinclair, and S. Mirnezami, Wave propagation in transversely isotropic cylinders, Int. J. Solids and Struct., vol. 44, no. 16, pp. 5236–5246, 2007. DOI: 10.1109/ultsym.2004.1417913.
  • F. Nelson, S. Dong, and R. Kalkra, Vibrations and waves in laminated orthotropic circular cylinders, J. Sound Vibr., vol. 18, no. 3, pp. 429–444, 1971. DOI: 10.1016/0022-460X(71)90714-0.
  • I. Mirsky, Wave propagation in transversely isotropic circular cylinders, part I: theory, J. Acoust. Soc. Am., vol. 37, no. 6, pp. 1016–1026, 1965. DOI: 10.1121/1.1909508.
  • A. V. Ilyashenko, et al., Pochhammer–Chree waves: polarization of the axially symmetric modes, Arch. Appl. Mech., vol. 88, no. 8, pp. 1385–1394, 2018a. DOI: 10.1007/s00419-018-1377-7.
  • G. Valsamos, F. Casadei, and G. Solomos, A numerical study of wave dispersion curves in cylindrical rods with circular cross-section, Appl. Comput. Mech., vol. 7, pp. 99–114, 2013. article has no DOI).
  • H. Kolsky, 2012. Stress Waves in Solids, 2nd ed. Dover Publ, New York. ISBN-13: 978-0486610986.
  • J. Zemanek, An experimental and theoretical investigation of elastic wave propagation in a cylinder, J. Acoust. Soc. Am., vol. 51, no. 1B, pp. 265–283, 1972. [Database] DOI: 10.1121/1.1912838.
  • R. D. Mindlin, and H. D. McNiven, Axially symmetric waves in elastic rods, Trans. ASME. J. Appl. Mech., vol. 27, no. 1, pp. 145–151, 1960. DOI: 10.1115/1.3643889.
  • Ph Hartman, 1987. Ordinary Differential Equations (Classics in Applied Mathematics). 2nd ed.SIAM, Philadelphia. DOI: 10.1137/1.9780898719222.
  • M. S. P. Eastham, 1973. The Spectral Theory of Periodic Differential Equations. Scottish Academic Press, Edinburgh. ISBN-13: 9780707302133.
  • A. A. Shmat’ko, V. N. Mizernik, and E. N. Odarenko, Floquet-Bloch waves in magnetophotonic crystals with transverse magnetic field, J. Electromagnetic Waves Appl., vol. 34, no. 12, pp. 1667–1679, 2020. DOI: 10.1080/09205071.2020.1780955.
  • D. J. Mead, Free wave propagation in periodically supported, infinite beams, J. Sound Vibr., vol. 11, no. 2, pp. 181–197, 1970. DOI: 10.1016/S0022-460X(70)80062-1.
  • F. Morandi, M. Miniaci, A. Marzani, L. Barbaresi, and M. Garai, Standardised acoustic characterisation of sonic crystals noise barriers: sound insulation and reflection properties, Appl. Acoust., vol. 114, no. Suppl. C, pp. 294–306, 2016. DOI: 10.1016/j.apacoust.2016.07.028.
  • H. A. Bruck, A one-dimensional model for designing functionally graded materials to manage stress waves, Int. J. Solids Struct., vol. 37, no. 44, pp. 6383–6395, 2000. DOI: 10.1016/S0020-7683(99)00236-X.
  • M. I. Hussein, M. J. Leamy, and M. Ruzzene, Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook, Appl. Mech. Rev., vol. 66, pp. 40802–40838, 2014. DOI: 10.1115/1.4026911.
  • M. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Acoustic band structure of periodic elastic composites, Phys. Rev. Lett., vol. 71, no. 13, pp. 2022–2025, 1993. DOI: 10.1103/physrevlett.71.2022.
  • M. S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski, and B. Djafari-Rouhani, Theory of acoustic band structure of periodic elastic composites, Phys. Rev. B Condens. Matter., vol. 49, no. 4, pp. 2313–2322, 1994. DOI: 10.1103/physrevb.49.2313.
  • S. S. Mester, and H. Benaroya, Periodic and near-periodic structures, Shock Vibr., vol. 2, no. 1, pp. 69–95, 1995. DOI: 10.3233/SAV-1995-2107.
  • T. N. Tongele, and T. Chen, Control of longitudinal wave propagation in conical periodic structures, J. Vib. Control., vol. 10, no. 12, pp. 1795–1811, 2004. [Database] DOI: 10.1177/1077546304042532.
  • H. Askes, A. V. Metrikine, A. V. Pichugin, and T. Bennett, Four simplified gradient elasticity models for the simulation of dispersive wave propagation, Phil. Mag., vol. 88, no. 28-29, pp. 3415–3443, 2008. DOI: 10.1080/14786430802524108.
  • S. A. Silling, Propagation of a stress pulse in a heterogeneous elastic bar, J. Peridyn. Nonlocal Model., vol. 3, no. 3, pp. 255–275, 2021. DOI: 10.1007/s42102-020-00048-5.
  • S. N. Butt, J. J. Timothy, and G. Meschke, Wave dispersion and propagation in state-based peridynamics, Comput. Mech., vol. 60, no. 5, pp. 725–738, 2017. DOI: 10.1007/s00466-017-1439-7.
  • Z. Guo, et al., Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect, J. Appl. Phys., vol. 124, no. 10, pp. 103104, 2018. DOI: 10.1063/1.5042096.
  • L. Wang, J. Xu, and J. Wang, Static and dynamic Green’s functions in peridynamics, J. Elast., vol. 126, no. 1, pp. 95–125, 2017. DOI: 10.1007/s10659-016-9583-4.
  • S. A. Silling, Attenuation of waves in a viscoelastic peridynamic medium, Math. Mech. Solids., vol. 24, no. 11, pp. 3597–3613, 2019. DOI: 10.1177/1081286519847241.
  • X. Xu, and J. T. Foster, Deriving peridynamic influence functions for one-dimensional elastic materials with periodic microstructure, J. Peridyn. Nonlocal Model., vol. 2, no. 4, pp. 337–351, 2020. DOI: 10.1007/s42102-020-00037-8.
  • A. Van Pamel, G. Sha, S. I. Rokhlin, and M. J. S. Lowe, Finite-element modelling of elastic wave propagation and scattering within heterogeneous media, Proc. Math. Phys. Eng. Sci., vol. 473, no. 2197, pp. 20160738–20160721, 2017. DOI: 10.1098/rspa.2016.0738.
  • Y. Mikata, Analytical solutions of peristatic and peridynamic problems for a ld infinite rod, Int. J. Solids Struct., vol. 49, no. 21, pp. 2887–2897, 2012. DOI: 10.1016/j.ijsolstr.2012.02.012.
  • A. Chakraborty, and S. Gopalakrishnan, A spectrally formulated finite element for wave propagation analysis in functionally graded beams, Int. J. Solids Struct., vol. 40, no. 10, pp. 2421–2448, 2003. DOI: 10.1016/S0020-7683(03)00029-5.
  • M.-L. Wu, L.-Y. Wu, W.-P. Yang, and L.-W. Chen, Elastic wave band gaps of one-dimensional phononic crystals with functionally graded materials, Smart Mater. Struct., vol. 18, no. 11, pp. 115013, 2009. DOI: 10.1088/0964-1726/18/11/115013.
  • M. Marcus, and H. Mink, 2010. A Survey of Matrix Theory and Matrix Inequalities, Revised ed. Dover Publication, New York ISBN-13: 978-0486671024.
  • J. M. Carcione, 2014. Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media. Elsevier, New York.
  • J. M. Carcione, and F. Cavallini, Forbidden directions for inhomogeneous pure shear waves in dissipative anisotropic media, Geophysics vol. 60, no. 2, pp. 522–530, 1995. DOI: 10.1190/1.1443789.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.