342
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Crashworthiness analysis of shrink circular tube energy absorbers with anti-climbers under multiple loading cases

&
Pages 1453-1469 | Received 17 Nov 2021, Accepted 21 Jan 2022, Published online: 24 Feb 2022

References

  • M. M. Abedi, A. Niknejad, G. H. Liaghat, and M. Z. Nejad, Theoretical and experimental study on empty and foam-filled columns with square and rectangular cross section under axial compression, Int. J. Mech. Sci., vol. 65, no. 1, pp. 134–146, 2012. DOI: 10.1016/j.ijmecsci.2012.09.011.
  • W. M. Choi, T. S. Kwon, H. S. Jung, and J. S. Kim, Influence of impact velocity on energy absorption characteristics and friction coefficient of expansion tube, Int. J. Crashworthiness., vol. 17, no. 6, pp. 621–629, 2012. DOI: 10.1080/13588265.2012.704188.
  • J. Li, G. Gao, H. Dong, S. Xie, and W. Guan, Study on the energy absorption of the expanding–splitting circular tube by experimental investigations and numerical simulations, Thin-Walled Struct., vol. 103, pp. 105–114, 2016. DOI: 10.1016/j.tws.2016.01.031.
  • A. Niknejad, and M. Moeinifard, Theoretical and experimental studies of the external inversion process in the circular metal tubes, Mater. Design., vol. 40, pp. 324–330, 2012. DOI: 10.1016/j.matdes.2012.04.005.
  • W. Guan, G. Gao, J. Li, and Y. Yu, Crushing analysis and multi-objective optimization of a cutting aluminium tube absorber for railway vehicles under quasi-static loading, Thin-Walled Struct., vol. 123, pp. 395–408, 2018. DOI: 10.1016/j.tws.2017.11.031.
  • Technical Committee CEN/TC 256 Railway Applications. BS EN 15227-2008 Railway Applications: crashworthiness Requirements for Railway Vehicle Bodies, London: British Standard Institution; 2008.
  • Transportation B. SAFETRAIN project results and rail passive safety harmonisation, 2001.
  • S. Yao, X. Xiao, P. Xu, Q. Qu, and Q. Che, The impact performance of honeycomb-filled structures under eccentric loading for subway vehicles, Thin-Walled Struct., vol. 123, pp. 360–370, 2018. DOI: 10.1016/j.tws.2017.10.031.
  • W. Guan, G. Gao, Y. Yu, and T. Zhuo, Crashworthiness analysis and multi-objective optimization of expanding circular tube energy absorbers with cylindrical anti-clamber under eccentric loading for subway vehicles, Struct. Multidisc. Optim., vol. 61, no. 4, pp. 1711–1719, 2020. DOI: 10.1007/s00158-019-02427-z.
  • W. Guan, Y. Yu, and G. Gao, Crashworthiness performance and multiobjective optimization of a combined splitting circular tube energy absorber under eccentric impact for subway vehicles, Int. J. Impact Eng., vol. 158, pp. 104006, 2021. DOI: 10.1016/j.ijimpeng.2021.104006.
  • H. Zhou, M. Mei, J. Zhang, and H. Tu, Investigations on the vertical buckling of railway vehicle’s anti-climber, Int. J. Crashworthiness., vol. 26, no. 2, pp. 171–181, 2021. DOI: 10.1080/13588265.2019.1701354.
  • H. Zhou, W. Wang, and M. Hecht, Three-dimensional override analysis of crashed railway multiple units, Veh. Syst. Dyn., vol. 50, no. 4, pp. 663–674, 2012. DOI: 10.1080/00423114.2011.631552.
  • C. Moreno, S. Reid, and T. Williams, Experimental and numerical assessment of oblique loading quasi-static testing of railway anticlimbers, Proc. Instit. Mech. Eng, F: J. Rail Rapid Transit., vol. 235, no. 2, pp. 143–154, 2021. DOI: 10.1177/0954409720908992.
  • C. Moreno, J. Winnett, and T. Williams, On the effect of anisotropy on the performance and simulation of shrinking tubes used as energy absorbers for railway vehicles, Thin-Walled Struct., vol. 161, pp. 107513, 2021. DOI: 10.1016/j.tws.2021.107513.
  • N. Qiu, Y. Gao, J. Fang, Z. Feng, G. Sun, and Q. Li, Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases, Finite Elem. Anal. Des., vol. 104, pp. 89–101, 2015. DOI: 10.1016/j.finel.2015.06.004.
  • G. Sun, S. Li, G. Li, and Q. Li, On crashing behaviors of aluminium/CFRP tubes subjected to axial and oblique loading: an experimental study, Compos. B: Eng., vol. 145, pp. 47–56, 2018. DOI: 10.1016/j.compositesb.2018.02.001.
  • X. Zhang and H. Zhang, Relative merits of conical tubes with graded thickness subjected to oblique impact loads, Int. J. Mech. Sci., vol. 98, pp. 111–125, 2015. DOI: 10.1016/j.ijmecsci.2015.04.013.
  • W. Ma, S. Xie, Z. Li, Z. Feng, and K. Jing, Crushing behaviors of horse-hoof-wall inspired corrugated tubes under multiple loading conditions, Mech. Adv. Mater. Struct., pp. 1–25, 2021. DOI: 10.1080/15376494.2021.1892245.
  • A. Asanjarani, A. Mahdian, and S. H. Dibajian, Comparative analysis of energy absorption behavior of tapered and grooved thin-walled tubes with the various geometry of the cross section, Mech. Adv. Mater. Struct., vol. 27, no. 8, pp. 633–644, 2020. DOI: 10.1080/15376494.2018.1488311.
  • T. Tran, S. Hou, X. Han, N. Nguyen, and M. Chau, Theoretical prediction and crashworthiness optimization of multi-cell square tubes under oblique impact loading, Int. J. Mech. Sci., vol. 89, pp. 177–193, 2014. DOI: 10.1016/j.ijmecsci.2014.08.027.
  • P. Ashtari and F. Barzegar, Accelerating fuzzy genetic algorithm for the optimization of steel structures, Struct. Multidisc. Optim., vol. 45, no. 2, pp. 275–285, 2012. DOI: 10.1007/s00158-011-0700-5.
  • M. Redhe, M. Giger, and L. Nilsson, An investigation of structural optimization in crashworthiness design using a stochastic approach, Struct. Multidisc. Optim., vol. 27, no. 6, pp. 446–459, 2004. DOI: 10.1007/s00158-004-0400-5.
  • A. R. Yildiz and K. N. Solanki, Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach, Int. J. Adv. Manuf. Technol., vol. 59, no. 1–4, pp. 367–376, 2012. DOI: 10.1007/s00170-011-3496-y.
  • S. Xie, X. Liang, H. Zhou, and J. Li, Crashworthiness optimisation of the front-end structure of the lead car of a high-speed train, Struct. Multidisc. Optim., vol. 53, no. 2, pp. 339–347, 2016. DOI: 10.1007/s00158-015-1332-y.
  • S. Xie, H. Li, C. Yang, and S. Yao, Crashworthiness optimisation of a composite energy-absorbing structure for subway vehicles based on hybrid particle swarm optimisation, Struct. Multidisc. Optim., vol. 58, no. 5, pp. 2291–2308, 2018. DOI: 10.1007/s00158-018-2022-3.
  • B. P. P. Almeida, M. L. Alves, P. A. R. Rosa, A. G. Brito, and P. A. F. Martins, Expansion and reduction of thin-walled tubes using a die: Experimental and theoretical investigation, Int. J. Mach. Tools Manuf., vol. 46, no. 12-13, pp. 1643–1652, 2006. DOI: 10.1016/j.ijmachtools.2005.08.018.
  • J. Li, G. Gao, W. Guan, S. Wang, and Y. Yu, Experimental and numerical investigations on the energy absorption of shrink circular tube under quasi-static loading, Int. J. Mech. Sci., vol. 137, pp. 284–294, 2018. DOI: 10.1016/j.ijmecsci.2018.01.019.
  • S. Yao, Z. Li, W. Ma, and P. Xu, Crashworthiness analysis of a straight-tapered shrink tube, Int. J. Mech. Sci., vol. 157-158, pp. 512–527, 2019. DOI: 10.1016/j.ijmecsci.2019.04.058.
  • S. R. Guillow, G. Lu, and R. H. Grzebieta, Quasi-static axial compression of thin-walled circular aluminium tubes, Int. J. Mech. Sci., vol. 43, no. 9, pp. 2103–2123, 2001. DOI: 10.1016/S0020-7403(01)00031-5.
  • J. Tanaskovic, D. Milkovic, V. Lucanin, and G. V. Franklin, Experimental investigations of the shrinking–splitting tube collision energy absorber, Thin-Walled Structures., vol. 86, pp. 142–147, 2015. DOI: 10.1016/j.tws.2014.10.007.
  • W. Guan, G. Gao, and Y. Yu, Crushing analysis and multiobjective crashworthiness optimization of combined shrinking circular tubes under impact loading, Struct. Multidisc. Optim., vol. 64, no. 3, pp. 1619–1649, 2021. DOI: 10.1007/s00158-021-02938-8.
  • J. O. Hallquist, LS-DYNA Keyword User’s Manual, Vol. 970. Livermore Software Technology Corporation, pp. 299–800, 2007.
  • J. Fang, G. Sun, N. Qiu, N. H. Kim, and Q. Li, On design optimization for structural crashworthiness and its state of the art, Struct. Multidisc. Optim., vol. 55, no. 3, pp. 1091–1119, 2017. DOI: 10.1007/s00158-016-1579-y.
  • Q. Gao, X. Zhao, C. Wang, L. Wang, and Z. Ma, Multi-objective crashworthiness optimization for an auxetic cylindrical structure under axial impact loading, Mater Design., vol. 143, pp. 120–130, 2018. DOI: 10.1016/j.matdes.2018.01.063.
  • Qiang Gao, Liangmo Wang, Yuanlong Wang, and Chenzhi Wang, Crushing analysis and multi-objective crashworthiness optimization of foam-filled ellipse tubes under oblique impact loading, Thin-Walled Struct., vol. 100, pp. 105–112, 2016. DOI: 10.1016/j.tws.2015.11.020.
  • SerdarTurgut Ince, Ankush Kumar, DaeKyeom Park, and JeomKee Paik, An advanced technology for structural crashworthiness analysis of a ship colliding with an ice-ridge: numerical modelling and experiments, Int. J. Impact Eng., vol. 110, pp. 112–122, 2017. DOI: 10.1016/j.ijimpeng.2017.02.014.
  • L. Jiang, Y. L. Shi, and Y. L. Cui, Effect of low strain rate on strength of Q 235 and 20 MnSi steel, Heat Treatment of Metals (China), vol. 7, pp. 9–12, 2002.
  • A. Morquio and J. D. Riera, Size and strain rate effects in steel structures, Eng. Struct., vol. 26, no. 5, pp. 669–679, 2004. DOI: 10.1016/j.engstruct.2004.01.007.
  • B. Liu, R. Villavicencio, and C. G. Soares, Experimental and numerical plastic response and failure of pre-notched transversely impacted beams, Int. J. Mech. Sci., vol. 77, pp. 314–332, 2013. DOI: 10.1016/j.ijmecsci.2013.09.032.
  • Guangjun Gao, Weiyuan Guan, Jian Li, Haipeng Dong, Xiang Zou, and Wei Chen, Experimental investigation of an active–passive integration energy absorber for railway vehicles, Thin-Walled Struct., vol. 117, pp. 89–97, 2017. DOI: 10.1016/j.tws.2017.03.029.
  • S. Xie and H. Zhou, Analysis and optimisation of parameters influencing the out-of-plane energy absorption of an aluminium honeycomb, Thin-Walled Struct., vol. 89, pp. 169–177, 2015. DOI: 10.1016/j.tws.2014.12.024.
  • ChoMar Aye, Nantiwat Pholdee, AliR. Yildiz, Sujin Bureerat, and SadiqM. Sait, Multi-surrogate-assisted metaheuristics for crashworthiness optimisation, Ijvd., vol. 80, no. 2/3/4, pp. 223–240, 2019. DOI: 10.1504/IJVD.2019.109866.
  • E. Demirci and A. R. Yıldız, An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers, Mater. Test., vol. 60, no. 7/8, pp. 661–668, 2018. DOI: 10.3139/120.111201.
  • E. Demirci and A. R. Yıldız, An experimental and numerical investigation of the effects of geometry and spot welds on the crashworthiness of vehicle thin-walled structures, Mater. Test., vol. 60, no. 6, pp. 553–561, 2018. DOI: 10.3139/120.111187.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.