555
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Modification of hexachiral unit cell to enhance auxetic stent performance

, , , , , & show all
Pages 1470-1484 | Received 01 Jul 2021, Accepted 22 Jan 2022, Published online: 22 Feb 2022

References

  • C. McCormick, 1 - Overview of cardiovascular stent designs, in Functionalised Cardiovascular Stents, J. G. Wall, H. Podbielska, and M. Wawrzyńska, Eds.: Woodhead Publishing, 2018, pp. 3–26. DOI: 10.1016/B978-0-08-100496-8.00001-9.
  • F. Amin, M.N. Ali, U. Ansari, M. Mir, M.A. Minhas, and W. Shahid, Auxetic coronary stent endoprosthesis: Fabrication and structural analysis, J. Appl. Biomater. Funct. Mater., vol. 13, no. 2, pp. 127–135, 2015.
  • V. Carneiro and H. Puga, Deformation behaviour of self-expanding magnesium stents based on auxetic chiral lattices, Ciênc. Tecnol. Mater., vol. 28, no. 1, pp. 14–18, 2016. DOI: 10.1016/j.ctmat.2016.01.002.
  • T.P. Murphy, D.E. Cutlip, J.G. Regensteiner, E.R. Mohler, D.J. Cohen, M.R. Reynolds, J.M. Massaro, B.A. Lewis, J. Cerezo, N.C. Oldenburg, C.C. Thum, M.R. Jaff, A.J. Comerota, M.W. Steffes, I.H. Abrahamsen, S.Goldberg, and A.T. Hirsch, Supervised Exercise, Stent Revascularization, or Medical Therapy for Claudication Due to Aortoiliac Peripheral Artery Disease: The CLEVER Study, Journal of the American College of Cardiology, vol. 65, no. 10, pp. 999–1009, 2015. DOI: 10.1016/j.jacc.2014.12.043.
  • M.N. Ali, J.J. Busfield, and I.U. Rehman, Auxetic oesophageal stents: Structure and mechanical properties, J. Mater. Sci. Mater. Med., vol. 25, no. 2, pp. 527–553, 2014.
  • S.K. Bhullar, A.T.M. Hewage, A. Alderson, and M.B.G. Jun, Influence of negative Poisson’s ratio on stent applications, Adv. Mater., vol. 2, no. 3, pp. 42–47, 2013. DOI: 10.11648/j.am.20130203.14.
  • R.P. Donahue et al., Evolution of the ureteral stent: The pivotal role of the gibbons ureteral catheter, Urology, vol. 115, pp. 3–7, 2018.
  • C. M. Mlynarczyk, E. L. Ditkoff, G. M. Badalato, and M. P. Rutman, Chapter 19 - Prostatic Stents, in A Comprehensive Guide to the Prostate, B. Chughtai, Ed.: Academic Press, 2018, pp. 157–166. DOI: 10.1016/B978-0-12-811464-3.00019-2.
  • D. Stoeckel, C. Bonsignore, and S. Duda, A survey of stent designs, Minim. Invasive Ther. Allied Technol., vol. 11, no. 4, pp. 137–147, 2002. DOI: 10.1080/136457002760273340.
  • J. Rösch and F.S. Keller, Historical account: Cardiovascular interventional radiology. In: Textbook of Catheter-Based Cardiovascular Interventions, Springer, pp. 1851–1862, 2018.
  • U. Sigwart, J. Puel, V. Mirkovitch, F. Joffre, and L. Kappenberger, Intravascular stents to prevent occlusion and re-stenosis after transluminal angioplasty, N Engl. J. Med., vol. 316, no. 12, pp. 701–706, 1987. DOI: 10.1056/NEJM198703193161201.
  • P.K. Bowen, E.R. Shearier, Sh. Zhao, R.J. Guillory II, F. Zhao, J. Goldman, and J.W. Drelich, Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Zn-Alloys, Advanced Healthcare Materials, vol. 5, no. 10, pp. 1121–1140, 2016. DOI: 10.1002/adhm.201501019.
  • G. Mani, M.D. Feldman, D. Patel, and C.M. Agrawal, Coronary stents: A materials perspective, Biomaterials, vol. 28, no. 9, pp. 1689–1710, 2007.
  • Y. Zheng and H. Yang, 9 - Manufacturing of cardiovascular stents, in Metallic Biomaterials Processing and Medical Device Manufacturing, C. Wen, Ed.: Woodhead Publishing, 2020, pp. 317–340. DOI: 10.1016/B978-0-08-102965-7.00009-6.
  • C. Tan and R.A. Schatz, The history of coronary stenting, Interv. Cardiol. Clin., vol. 5, no. 3, pp. 271–280, 2016. DOI: 10.1016/j.iccl.2016.03.001.
  • B. Tomberli, A. Mattesini, G.I. Baldereschi, and C. Di Mario, A brief history of coronary artery stents, Rev. Esp. Cardiol. (English Edition)., vol. 71, no. 5, pp. 312–319, 2018. DOI: 10.1016/j.rec.2017.11.022.
  • L. Kong, W. Liu, G. Yan, Q. Li, H. Yang, and Y.F. Song, Poly-l-lactic acid/amorphous calcium phosphate bioabsorbable stent causes less inflammation than poly-l-lactic acid stent in coronary arteries, Int. J. Clin. Exp. Med., vol. 7, no. 12, pp. 5317, 2014.
  • R. Naseem, L. Zhao, Y. Liu, and V.V. Silberschmidt, Experimental and computational studies of poly-L-lactic acid for cardiovascular applications: Recent progress, Mech. Adv. Mater. Mod. Process., vol. 3, no. 1, pp. 1–18, 2017. DOI: 10.1186/s40759-017-0028-y.
  • R.K. Choubey and S.K. Pradhan, Prediction of strength and radial recoil of various stents using FE analysis, Mater. Today: Proc., vol. 27, pp. 2254–2259, 2020.
  • T. Watson, M.W. Webster, J.A. Ormiston, P.N. Ruygrok, and J.T. Stewart, Long and short of optimal stent design, Open Heart., vol. 4, no. 2, pp. e000680, 2017. DOI: 10.1136/openhrt-2017-000680.
  • G. Wang et al., Three‐year follow up of biodegradable polymer cobalt‐chromium sirolimus‐eluting stent (EXCROSSAL) in treating de novo coronary artery disease: Pooled analysis of CREDIT II and CREDIT III trials, Catheter. Cardiovasc. Interv., vol. 95, pp. 565–571, 2020. DOI: 10.1002/ccd.28713.
  • J. Raamachandran and K. Jayavenkateshwaran, Modeling of stents exhibiting negative Poisson's ratio effect, Comput. Methods Biomech. Biomed. Eng., vol. 10, no. 4, pp. 245–255, 2007.
  • L. Geng, X. Ruan, W. Wu, R. Xia, and D. Fang, Mechanical properties of selective laser sintering (SLS) additive manufactured chiral auxetic cylindrical stent, Exp. Mech., vol. 59, no. 6, pp. 913–925, 2019. DOI: 10.1007/s11340-019-00489-0.
  • Z. Li, S. Wang, K. Zhou, Q. Tan, and H. Feng, Mechanical behavior of hinge lozenge grid structure, IOP Conf. Ser.: Mater. Sci. Eng., vol. 562, no. 1, pp. 012131, 2019. DOI: 10.1088/1757-899X/562/1/012131.
  • S.K. Bhullar, J. Ko, Y. Cho, and M.B. Jun, Fabrication and characterization of nonwoven auxetic polymer stent, Polym. Plast. Technol. Eng., vol. 54, no. 15, pp. 1553–1559, 2015. DOI: 10.1080/03602559.2014.986812.
  • V. H. Carneiro and H. Puga, Modeling and elastic simulation of auxetic magnesium stents, in 2015 IEEE 4th Portuguese Meeting on Bioengineering (ENBENG), 2015, pp. 1–4. DOI: 10.1109/ENBENG.2015.7088856.
  • N. Nikam, T.B. Steinberg, and D.H. Steinberg, Advances in stent technologies and their effect on clinical efficacy and safety, Med. Dev. (Auckland, NZ)., vol. 7, pp. 165, 2014.
  • L.-D. Hou, Z. Li, Y. Pan, M. Sabir, Y.-F. Zheng, and L. Li, A review on biodegradable materials for cardiovascular stent application, Front. Mater. Sci., vol. 10, no. 3, pp. 238–259, 2016. DOI: 10.1007/s11706-016-0344-x.
  • G.A. Holzapfel, M. Stadler, and T.C. Gasser, Changes in the mechanical environment of stenotic arteries during interaction with stents: Computational assessment of parametric stent designs, J. Biomech. Eng., vol. 127, no. 1, pp. 166–180, 2005.
  • W. Wu, X. Song, J. Liang, R. Xia, G. Qian, and D. Fang, Mechanical properties of anti-tetrachiral auxetic stents, Compos. Struct., vol. 185, pp. 381–392, 2018. DOI: 10.1016/j.compstruct.2017.11.048.
  • W.-Q. Wang, D.-K. Liang, D.-Z. Yang, and M. Qi, Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method, J. Biomech., vol. 39, no. 1, pp. 21–32, 2006.
  • G. Stavroulakis, Auxetic behaviour: Appearance and engineering applications. Phys. Status Solidi (b), vol. 242, no. 3, pp. 710–720, 2005.
  • X. Ren, R. Das, P. Tran, T.D. Ngo, and Y.M. Xie, Auxetic metamaterials and structures: A review, Smart Mater. Struct., vol. 27, no. 2, pp. 023001, 2018. DOI: 10.1088/1361-665X/aaa61c.
  • N. Wang, Stem cell mechanics: Auxetic nuclei, Nat. Mater., vol. 13, no. 6, pp. 540–542, 2014.
  • K.E. Evans and A. Alderson, Auxetic materials: Functional materials and structures from lateral thinking! Adv. Mater., vol. 12, no. 9, pp. 617–628, 2000.
  • H.M. Kolken and A. Zadpoor, Auxetic mechanical metamaterials, RSC Adv., vol. 7, no. 9, pp. 5111–5129, 2017. DOI: 10.1039/C6RA27333E.
  • Z. Munib, M.N. Ali, U. Ansari, and M. Mir, Auxetic polymeric bone stent for tubular fractures: Design, fabrication and structural analysis, Polym. Plast. Technol. Eng., vol. 54, no. 16, pp. 1667–1678, 2015. DOI: 10.1080/03602559.2015.1021481.
  • M. Ulbin, M. Borovinšek, M. Vesenjak, and S. Glodež, Computational fatigue analysis of auxetic cellular structures made of SLM AlSi10Mg alloy, Metals, vol. 10, no. 7, pp. 945, 2020. DOI: 10.3390/met10070945.
  • C. Weng, Z. Dai, G. Wang, L. Liu, and Z. Zhang, Elastomer-free, stretchable, and conformable silver nanowire conductors enabled by three-dimensional buckled microstructures, ACS Appl. Mater. Interfaces., vol. 11, no. 6, pp. 6541–6549, 2019. DOI: 10.1021/acsami.8b19890.
  • N. Novak, M. Vesenjak, and Z. Ren, Auxetic cellular materials-a review, SV-J. Mech. Eng., vol. 62, no. 9, pp. 485–493, 2016. DOI: 10.5545/sv-jme.2016.3656.
  • W. T. B. Kelvin, The molecular tactics of a crystal, Clarendon Press, Oxford, UK 1894, (DLC) 12034810, (OCoLC) 11988941.
  • Z. Wang, C. Luan, G. Liao, J. Liu, X. Yao, and J. Fu, Progress in auxetic mechanical metamaterials: Structures, characteristics, manufacturing methods, and applications, Adv. Eng. Mater., vol. 22, no. 10, pp. 2000312, 2020. DOI: 10.1002/adem.202000312.
  • X. Ren, Studies on three-dimensional metamaterials and tubular structures with negative Poisson’s ratio Studies on three-dimensional metamaterials and tubular structures with negative Poisson’s ratio [PhD thesis], Nanjing Tech University.
  • Y. Kathuria, Laser microprocessing of metallic stent for medical therapy, J. Mater. Process. Technol., vol. 170, no. 3, pp. 545–550, 2005. DOI: 10.1016/j.jmatprotec.2005.05.041.
  • K. Takahata and Y.B. Gianchandani, A planar approach for manufacturing cardiac stents: Design, fabrication, and mechanical evaluation, J. Microelectromech. Syst., vol. 13, no. 6, pp. 933–939, 2004. DOI: 10.1109/JMEMS.2004.838357.
  • H. Xue, Z. Luo, T. Brown, and S. Beier, Design of self-expanding auxetic stents using topology optimization, Front. Bioeng. Biotechnol., vol. 8, pp. 736, 2020.
  • X. Ruan, W. Yuan, Y. Hu, J. Li, W. Wu, and R. Xia, Chiral constrained stent: Effect of structural design on the mechanical and intravascular stent deployment performances, Mech. Mater., vol. 148, pp. 103509, 2020. DOI: 10.1016/j.mechmat.2020.103509.
  • P. Poncin and J. Proft, Stent tubing: understanding the desired attributes, in Medical device materials: proceedings of the materials & processes for medical devices conference, 2004, pp. 253–259.
  • N. Beshchasna et al., Recent advances in manufacturing innovative stents, Pharmaceutics., vol. 12, no. 4, pp. 349, 2020.
  • ASM International, Materials and Coatings for Medical Devices: Cardiovascular, ASM Materials for Medical Devices Database Committee, ASM International, 2009, pp. 69–73.
  • S.M. Patel, J. Li, and S.A. Parikh, Design and comparison of large vessel stents: Balloon expandable and self-expanding peripheral arterial stents, Interv. Cardiol. Clin., vol. 5, no. 3, pp. 365–380, 2016.
  • Military Handbook- MIL-HDBK-5H: Metallic Materials and Elements for Aerospace Vehicle Structures. U.S. Department of Defense, 1998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.