273
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Dynamic stability of hybrid fiber/nanocomposite-reinforced toroidal shells subjected to the periodic axial and pressure loadings

, , , &
Pages 1574-1590 | Received 15 Nov 2021, Accepted 29 Jan 2022, Published online: 18 Feb 2022

References

  • V. T. T. Anh, and N. D. Duc, The nonlinear stability of axisymmetric functionally graded material annular spherical shells under thermo-mechanical load, Mech. Adv. Mater. Struct., vol. 23, no. 12, pp. 1421–1429, 2016. DOI: 10.1080/15376494.2015.1091528.
  • V. T. T. Anh, and NDinh Duc, Nonlinear response of a shear deformable S-FGM shallow spherical shell with ceramic-metal-ceramic layers resting on an elastic foundation in a thermal environment, Mech. Adv. Mater. Struct., vol. 23, no. 8, pp. 926–934, 2016. DOI: 10.1080/15376494.2015.1059527.
  • V. H. Nam, N. Thi Phuong, and D. Huy Bich, Buckling analysis of parallel eccentrically stiffened functionally graded annular spherical segments subjected to mechanic loads, Mech. Adv. Mater. Struct., vol. 27, no. 7, pp. 569–578, 2020. DOI: 10.1080/15376494.2018.1487608.
  • N. Van Thanh, V. Dinh Quang, N. Dinh Khoa, K. Seung-Eock, and N. Dinh Duc, Nonlinear dynamic response and vibration of FG CNTRC shear deformable circular cylindrical shell with temperature-dependent material properties and surrounded on elastic foundations, J. Sandw. Struct. Mater., vol. 21, no. 7, pp. 2456–2483, 2019. DOI: 10.1177/1099636217752243.
  • S. Kamarian, M. Salim, R. Dimitri, and F. Tornabene, Free vibration analysis of conical shells reinforced with agglomerated Carbon Nanotubes, Int. J. Mech. Sci., vol. 108–109, pp. 157–165, 2016. DOI: 10.1016/j.ijmecsci.2016.02.006.
  • Ö. Civalek, and M. Avcar, Free vibration and buckling analyses of CNT reinforced laminated non ‑ rectangular plates by discrete singular convolution method, Eng. Comput., pp. 1–33, 2020. DOI: 10.1007/s00366-020-01168-8.
  • A. R. Ghasemi, M. Mohandes, R. Dimitri, and F. Tornabene, Agglomeration effects on the vibrations of CNTs/fiber/polymer/metal hybrid laminates cylindrical shell, Compos. Part B Eng., vol. 167, pp. 700–716, 2019. DOI: 10.1016/j.compositesb.2019.03.028.
  • A. R. Ghasemi, and M. Soleymani, Effects of carbon nanotubes distribution on the buckling of carbon nanotubes/fiber/polymer/metal hybrid laminates cylindrical shell, J. Sandw. Struct. Mater., vol. 23, no. 6, pp. 2086–2105, 2021. DOI: 10.1177/1099636220909786.
  • M. S. Zarei, M. B. Azizkhani, M. H. Hajmohammad, and R. Kolahchi, Dynamic buckling of polymer–carbon nanotube–fiber multiphase nanocomposite viscoelastic laminated conical shells in hygrothermal environments, J. Sandw. Struct. Mater., pp. 1–26, 2017. DOI: 10.1177/1099636217743288.
  • J. W. Hutchinson, Initial post-buckling behavior of toroidal shell segments, Int. J. Solids Struct., vol. 3, no. 1, pp. 97–115, 1967. DOI: 10.1016/0020-7683(67)90046-7.
  • H. S. Shen, Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, part I: axially-loaded shells, Compos. Struct., vol. 93, no. 8, pp. 2096–2108, 2011. DOI: 10.1016/j.compstruct.2011.02.011.
  • H. S. Shen, Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part II: Pressure-loaded shells, Compos. Struct., vol. 93, no. 10, pp. 2496–2503, 2011. DOI: 10.1016/j.compstruct.2011.04.005.
  • M. A. Shahmohammadi, S. M. Mirfatah, A. Houshmand-Sarvestani, and H. Salehipour, Analytical assessment of the axisymmetric snap-through behaviour of FG_CNTRC spherical shells under uniform external pressure incorporating the CNTs agglomeration effects, Eur. Phys. J. Plus., vol. 136, no. 7, pp. 1–20, 2021. DOI: 10.1140/epjp/s13360-021-01724-1.
  • B. Qin, Q. Wang, R. Zhong, X. Zhao, and C. Shuai, A three-dimensional solution for free vibration of FGP-GPLRC cylindrical shells resting on elastic foundations: a comparative and parametric study, Int. J. Mech. Sci., vol. 187, pp. 105896, 2020. DOI: 10.1016/j.ijmecsci.2020.105896.
  • A. M. Zenkour, Three-dimensional thermal shock plate problem within the framework of different thermoelasticity theories, Compos. Struct., vol. 132, pp. 1029–1042, 2015. DOI: 10.1016/j.compstruct.2015.07.013.
  • A. M. Zenkour, A comparative study for bending of cross-ply laminated plates resting on elastic foundations, Smart Struct. Syst., vol. 15, no. 6, pp. 1569–1582, 2015. DOI: 10.12989/sss.2015.15.6.1569.
  • M. Amabili, and J. N. Reddy, The nonlinear, third-order thickness and shear deformation theory for statics and dynamics of laminated composite shells, Compos. Struct., vol. 244, pp. 112265, 2020. DOI: 10.1016/j.compstruct.2020.112265.
  • Y. Q. Wang, C. Ye, and J. W. Zu, Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets, Aerosp. Sci. Technol., vol. 85, pp. 359–370, 2019. DOI: 10.1016/j.ast.2018.12.022.
  • F. Pellicano, Vibrations of circular cylindrical shells: theory and experiments, J. Sound Vib., vol. 303, no. 1–2, pp. 154–170, 2007. DOI: 10.1016/j.jsv.2007.01.022.
  • F. Yang, X. Jiang, and F. Du, Vibration of rotating circular cylindrical shells with distributed springs, J. Mech., vol. 37, pp. 346–358, 2021. DOI: 10.1093/jom/ufab008.
  • E. C. Naumann, and J. L. Sewall, An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners. NASA TN D-4705, Washington DC. 1968.
  • H. Salehipour, S. Emadi, S. Tayebikhorami, and M. A. Shahmohammadi, A semi-analytical solution for dynamic stability analysis of nanocomposite/fibre-reinforced doubly-curved panels resting on the elastic foundation in thermal environment, Eur. Phys. J. Plus., vol. 137, no. 1, pp. 1–36, 2022. DOI: 10.1140/epjp/s13360-021-02190-5.
  • M. A. Shahmohammadi, S. M. Mirfatah, H. Salehipour, M. Azhari, and Ö. Civalek, Free vibration and stability of hybrid nanocomposite-reinforced shallow toroidal shells using an extended closed-form formula based on the Galerkin method, Mech. Adv. Mater. Struct., pp. 1–17, 2021. DOI: 10.1080/15376494.2021.1952665.
  • Y. Heydarpour, and P. Malekzadeh, Dynamic stability of rotating FG-CNTRC cylindrical shells under combined static and periodic axial loads, Int. J. Struct. Stab. Dyn., vol. 18, no. 12, pp. 1–29, 2018.
  • M. A. Shahmohammadi, M. Azhari, M. M. Saadatpour, H. Salehipour, and Ö. Civalek, Dynamic instability analysis of general shells reinforced with polymeric matrix and carbon fibers using a coupled IG-SFSM formulation, Compos. Struct., vol. 263, pp. 113720, 2021. DOI: 10.1016/j.compstruct.2021.113720.
  • M. A. Shahmohammadi, M. Azhari, H. Salehipour, and Ö. Civalek, A novel composite model for vibration of thin-walled layered composite panels incorporating the agglomeration of CNTs, Aerosp. Sci. Technol., vol. 116, pp. 106897, 2021. DOI: 10.1016/j.ast.2021.106897.
  • F. Ebrahimi, M. R. Barati, and Ö. Civalek, Application of Chebyshev – Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures, Eng. Comput., vol. 36, no. 3, pp. 953–964, 2020. DOI: 10.1007/s00366-019-00742-z.
  • N. D. Duc, S. E. Kim, D. T. Manh, and P. D. Nguyen, Effect of eccentrically oblique stiffeners and temperature on the nonlinear static and dynamic response of S-FGM cylindrical panels, Thin-Walled Struct., vol. 146, pp. 106438, 2020. DOI: 10.1016/j.tws.2019.106438.
  • N. D. Duc, P. D. Nguyen, and N. D. Khoa, Nonlinear dynamic analysis and vibration of eccentrically stiffened S-FGM elliptical cylindrical shells surrounded on elastic foundations in thermal environments, Thin-Walled Struct., vol. 117, pp. 178–189, 2017.
  • N. D. Duc, and T. Q. Quan, Nonlinear dynamic analysis of imperfect functionally graded material double curved thin shallow shells with temperature-dependent properties on elastic foundation, JVC/J. Vib. Control., vol. 21, no. 7, pp. 1340–1362, 2015. DOI: 10.1177/1077546313494114.
  • N. D. Duc, and T. Q. Quan, Nonlinear response of imperfect eccentrically stiffened FGM cylindrical panels on elastic foundation subjected to mechanical loads, Eur. J. Mech. A/Solids., vol. 46, pp. 60–71, 2014. DOI: 10.1016/j.euromechsol.2014.02.005.
  • N. D. Duc, K. Seung-Eock, and D. Q. Chan, Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT, J. Therm. Stress., vol. 41, no. 3, pp. 331–365, 2018. DOI: 10.1080/01495739.2017.1398623.
  • N. D. Duc, N. D. Tuan, P. Tran, N. T. Dao, and N. T. Dat, Nonlinear dynamic analysis of Sigmoid functionally graded circular cylindrical shells on elastic foundations using the third order shear deformation theory in thermal environments, Int. J. Mech. Sci., vol. 101–102, pp. 338–348, 2015. vol DOI: 10.1016/j.ijmecsci.2015.08.018.
  • P. P. Minh, and N. D. Duc, The effect of cracks on the stability of the functionally graded plates with variable-thickness using HSDT and phase-field theory, Compos. Part B Eng., vol. 175, pp. 107086, 2019. DOI: 10.1016/j.compositesb.2019.107086.
  • N. D. Duc, and H. T. Thiem, Dynamic Analysis of Imperfect FGM Circular Cylindrical Shells Reinforced by FGM Stiffener System Using Third Order Shear Deformation Theory in Term of Displacement Components, Lat. Am. J. Solids Struct., vol. 14, no. 13, pp. 2534–2570, 2017. DOI: 10.1590/1679-78253516.
  • C. Zhang, L. Wang, A. Eyvazian, A. Khan, and T. A. Sebaey, Analytical solution for static and dynamic analysis of FGP cylinders integrated with FG ‑ GPLs patches exposed to longitudinal magnetic, Eng. Comput., pp. 1–19, 2021. DOI: 10.1007/s00366-021-01361-3.
  • H. Salehipour, and A. Shahsavar, A three dimensional elasticity model for free vibration analysis of functionally graded micro/nano plates: modified strain gradient theory, Compos. Struct., vol. 206, pp. 415–424, 2018. DOI: 10.1016/j.compstruct.2018.08.033.
  • D. Liu, Free vibration of functionally graded graphene platelets reinforced magnetic nanocomposite beams resting on elastic foundation, Nanomaterials., vol. 10, no. 11, pp. 2193–2120, 2020. DOI: 10.3390/nano10112193.
  • F. Azhari, B. Boroomand, and M. Shahbazi, Explicit relations for the solution of laminated plates modeled by a higher shear deformation theory: derivation of exponential basis functions, Int. J. Mech. Sci., vol. 77, pp. 301–313, 2013. DOI: 10.1016/j.ijmecsci.2013.10.002.
  • F. Azhari, B. Boroomand, and M. Shahbazi, Exponential basis functions in the solution of laminated plates using a higher-order Zig-Zag theory, Compos. Struct., vol. 105, pp. 398–407, 2013. DOI: 10.1016/j.compstruct.2013.05.022.
  • B. Boroomand, F. Azhari, and M. Shahbazi, On definition of clamped conditions in TSDT and FSDT; the use of exponential basis functions in solution of laminated composites, Compos. Struct., vol. 97, pp. 129–135, 2013. DOI: 10.1016/j.compstruct.2012.10.029.
  • S. Mohamad Mirfatah, S. Tayebikhorami, M. Amin Shahmohammadi, H. Salehipour, and Ö. Civalek, Thermo-elastic damped nonlinear dynamic response of the initially stressed hybrid GPL/CNT/fiber/polymer composite toroidal shells surrounded by elastic foundation, Compos. Struct., vol. 283, pp. 115047, 2022. DOI: 10.1016/j.compstruct.2021.115047.
  • D. D. Nguyen, Nonlinear thermo- electro-mechanical dynamic response of shear deformable piezoelectric sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations, J. Sandw. Struct. Mater., vol. 20, no. 3, pp. 351–378, 2018. DOI: 10.1177/1099636216653266.
  • M. A. Shahmohammadi, S. M. Mirfatah, S. Emadi, H. Salehipour, and Ö. Civalek, Nonlinear thermo-mechanical static analysis of toroidal shells made of nanocomposite/fiber reinforced composite plies surrounded by elastic medium, Thin-Walled Struct., vol. 170, pp. 108616, 2022. DOI: 10.1016/j.tws.2021.108616.
  • P. M. Vuong, and N. D. Duc, Nonlinear vibration of FGM moderately thick toroidal shell segment within the framework of Reddy’s third order-shear deformation shell theory, Int. J. Mech. Mater. Des., vol. 16, no. 2, pp. 245–264, 2020. DOI: 10.1007/s10999-019-09473-x.
  • P. M. Vuong, and N. D. Duc, Nonlinear static and dynamic stability of functionally graded toroidal shell segments under axial compression, Thin-Walled Struct., vol. 155, pp. 106973, 2020. DOI: 10.1016/j.tws.2020.106973.
  • P. M. Vuong, and N. D. Duc, Nonlinear buckling and postbuckling of a FGM toroidal shell segment under a torsional load in a thermal environment within Reddy’s third-order shear deformation shell theory, Mech. Compos. Mater., vol. 55, no. 4, pp. 467–482, 2019. DOI: 10.1007/s11029-019-09826-9.
  • N. D. Duc, Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear deformation shell theory, Eur. J. Mech., vol. 58, pp. 10–30, 2016. DOI: 10.1016/j.euromechsol.2016.01.004.
  • N. D. Duc, Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation, Compos. Struct., vol. 99, pp. 88–96, 2013. DOI: 10.1016/j.compstruct.2012.11.017.
  • N. D. Duc, et al., Mechanical and thermal stability of eccentrically stiffened functionally graded conical shell panels resting on elastic foundations and in thermal environment, Compos. Struct., vol. 132, pp. 597–609, 2015. DOI: 10.1016/j.compstruct.2015.05.072.
  • P. M. Vuong, and N. D. Duc, Nonlinear buckling and post-buckling behavior of shear deformable sandwich toroidal shell segments with functionally graded core subjected to axial compression and thermal loads, Aerosp. Sci. Technol., vol. 106, pp. 106084, 2020. DOI: 10.1016/j.ast.2020.106084.
  • F. Moleiro, C. M. Soares, and E. Carrera, Three-dimensional exact hygro-thermo-elastic solutions for multilayered plates: composite laminates, fibre metal laminates and sandwich plates, Compos. Struct., vol. 216, pp. 260–278, 2019. DOI: 10.1016/j.compstruct.2019.02.071.
  • S. Severino, E. Zappino, A. Pagani, M. Gigliotti, Y. Pannier, and E. Carrera, A variable kinematic one-dimensional model for the hygro-mechanical analysis of composite materials, Compos. Struct., vol. 242, pp. 112089, 2020. DOI: 10.1016/j.compstruct.2020.112089.
  • E. Carrera, M. Cinefra, M. Petrolo, and E. Zappino, Finite Element Analysis of Structures through Unified Formulation, John Wiley & Sons, Hoboken, NJ, 2014.
  • E. Carrera, G. Giunta, and M. Petrolo, Beam Structures: classical and Advanced Theories, John Wiley & Sons Ltd, Hoboken, NJ, 2011.
  • E. Carrera, and V. V. Zozulya, Carrera unified formulation (CUF) for the micropolar beams: Analytical solutions, Mech. Adv. Mater. Struct., vol. 28, no. 6, pp. 583–607, 2021. DOI: 10.1080/15376494.2019.1578013.
  • E. Carrera, F. Miglioretti, and M. Petrolo, Computations and evaluations of higher-order theories for free vibration analysis of beams, J. Sound Vib., vol. 331, no. 19, pp. 4269–4284, 2012. DOI: 10.1016/j.jsv.2012.04.017.
  • F. Moleiro, E. Carrera, A. J. M. Ferreira, and J. N. Reddy, Hygro-thermo-mechanical modelling and analysis of multilayered plates with embedded functionally graded material layers, Compos. Struct., vol. 233, pp. 111442, 2020. DOI: 10.1016/j.compstruct.2019.111442.
  • N. K. Sahu, D. K. Biswal, S. V. Joseph, and S. C. Mohanty, Vibration and damping analysis of doubly curved viscoelastic-FGM sandwich shell structures using FOSDT, Structures, vol. 26, pp. 24–38, 2020. DOI: 10.1016/j.istruc.2020.04.007.
  • Y. Sitli, K. Mhada, O. Bourihane, and H. Rhanim, Buckling and post-buckling analysis of a functionally graded material (FGM) plate by the Asymptotic Numerical Method, Structures, vol. 31, pp. 1031–1040, 2021. DOI: 10.1016/j.istruc.2021.01.100.
  • N. Vu-Bac, et al., A node-based smoothed extended finite element method (NS-XFEM) for fracture analysis, Comput. Model. Eng. Sci., vol. 73, no. 4, pp. 331–356, 2011.
  • H. Guo, X. Zhuang, and T. Rabczuk, A deep collocation method for the bending analysis of Kirchhoff plate, Mater. Contin., vol. 59, no. 2, pp. 433–456, 2019. DOI: 10.32604/cmc.2019.06660.
  • S. Sahmani, M. M. Aghdam, and T. Rabczuk, Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory, Compos. Struct., vol. 186, pp. 68–78, 2018. DOI: 10.1016/j.compstruct.2017.11.082.
  • V. Keshav, S. N. Patel, and R. Kumar, Non-linear stability and failure of laminated composite stiffened cylindrical panels subjected to in-plane impulse loading, Structures, vol. 29, pp. 360–372, 2021. DOI: 10.1016/j.istruc.2020.11.021.
  • M. Cinefra, M. Petrolo, G. Li, and E. Carrera, Variable kinematic shell elements for composite laminates accounting for hygrothermal effects, J. Therm. Stress., vol. 40, no. 12, pp. 1523–1544, 2017. DOI: 10.1080/01495739.2017.1360165.
  • P. Xiang, Q. Xia, L. Z. Jiang, L. Peng, J. W. Yan, and X. Liu, Free vibration analysis of FG-CNTRC conical shell panels using the kernel particle Ritz element-free method, Compos. Struct., vol. 255, pp. 112987, 2021. DOI: 10.1016/j.compstruct.2020.112987.
  • N. Fallah, and M. Delzendeh, Free vibration analysis of laminated composite plates using meshless finite volume method, Eng. Anal. Bound. Elem., vol. 88, pp. 132–144, 2018. DOI: 10.1016/j.enganabound.2017.12.011.
  • S. Hosseini, G. Rahimi, and Y. Anani, A meshless collocation method based on radial basis functions for free and forced vibration analysis of functionally graded plates using FSDT, Eng. Anal. Bound. Elem., vol. 125, pp. 168–177, 2021. DOI: 10.1016/j.enganabound.2020.12.016.
  • A. Houshmand-Sarvestani, A. Totonchi, M. A. Shahmohammadi, and H. Salehipour, Numerical assessment of the effects of ADAS yielding metallic dampers on the structural behavior of steel shear walls (SSWs), Mech. Based Des. Struct. Mach., pp. 1–19, 2021. DOI: 10.1080/15397734.2021.1875328.
  • R. Rostami, and M. Mohammadimehr, Vibration control of rotating sandwich cylindrical shell ‑ reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto ‑ electro ‑ elastic layers, Eng. Comput., pp. 1–14, 2020. DOI: 10.1007/s00366-020-01052-5.
  • R. Bahadori, and M. M. Najafizadeh, Free vibration analysis of two-dimensional functionally graded axisymmetric cylindrical shell on Winkler–Pasternak elastic foundation by First-order Shear Deformation Theory and using Navier-differential quadrature solution methods, Appl. Math. Model., vol. 39, no. 16, pp. 4877–4894, 2015. DOI: 10.1016/j.apm.2015.04.012.
  • A. Shojaei, U. Galvanetto, T. Rabczuk, A. Jenabi, and M. Zaccariotto, A generalized finite difference method based on the Peridynamic differential operator for the solution of problems in bounded and unbounded domains, Comput. Methods Appl. Mech. Eng., vol. 343, pp. 100–126, 2019. DOI: 10.1016/j.cma.2018.08.033.
  • Ö. Civalek, Buckling analysis of composite panels and shells with different material properties by discrete singular convolution (DSC) method, Compos. Struct., vol. 161, pp. 93–110, 2017. DOI: 10.1016/j.compstruct.2016.10.077.
  • Y. Zhang, G. Jin, M. Chen, T. Ye, and Z. Liu, Isogeometric free vibration of sector cylindrical shells with carbon nanotubes reinforced and functionally graded materials, Results Phys., vol. 16, pp. 102889, 2020. DOI: 10.1016/j.rinp.2019.102889.
  • M. A. Shahmohammadi, M. Azhari, M. M. Saadatpour, and S. Sarrami-Foroushani, Geometrically nonlinear analysis of sandwich FGM and laminated composite degenerated shells using the isogeometric finite strip method, Comput. Methods Appl. Mech. Eng., vol. 371, pp. 113311, 2020. DOI: 10.1016/j.cma.2020.113311.
  • S. M. Mirfatah, B. Boroomand, and E. Soleimanifar, On the solution of 3D problems in physics: From the geometry definition in CAD to the solution by a meshless method, J. Comput. Phys., vol. 393, pp. 351–374, 2019. DOI: 10.1016/j.jcp.2019.05.007.
  • M. Naghavi, S. Sarrami-Foroushani, and F. Azhari, Bending analysis of functionally graded sandwich plates using the refined finite strip method, J. Sandw. Struct. Mater., vol. 24, no. 1, pp. 448–483, 2022. DOI: 10.1177/10996362211020448.
  • Z. Nouri, S. Sarrami-Foroushani, F. Azhari, and M. Azhari, Application of Carrera unified formulation in conjunction with finite strip method in static and stability analysis of functionally graded plates, Mech. Adv. Mater. Struct., vol. 29, no. 2, pp. 250–266, 2022. DOI: 10.1080/15376494.2020.1762265.
  • Z. Shafiei, S. Sarrami-Foroushani, F. Azhari, and M. Azhari, Application of modified couple-stress theory to stability and free vibration analysis of single and multi-layered graphene sheets, Aerosp. Sci. Technol., vol. 98, pp. 105652, 2020. DOI: 10.1016/j.ast.2019.105652.
  • M. Amabili, Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials, Cambridge University Press, Cambridge, 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.