432
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Optimization of a cruciform specimen for fatigue crack growth under in and out-of-phase in-plane biaxial loading conditions

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1649-1666 | Received 20 Oct 2021, Accepted 02 Feb 2022, Published online: 21 Feb 2022

References

  • C. H. Wolf, A. Burgold, S. Henkel, M. Kuna, and H. Biermann, Crack growth behaviour in biaxial stress fields: calculation of K-factors for cruciform specimens, Theor. Appl. Fract. Mech., vol. 107, pp. 102521, 2020. DOI: 10.1016/j.tafmec.2020.102521.
  • L. Nasdala, and A. H. Husni, Determination of yield surfaces in accordance with ISO 16842 using an optimized cruciform test specimen, Exp. Mech., vol. 60, no. 6, pp. 815–832, 2020. DOI: 10.1007/s11340-020-00601-9.
  • E. Breitbarth, M. Besel, and S. Reh, Biaxial testing of cruciform specimens representing characteristics of a metallic airplane fuselage section, Int. J. Fatigue., vol. 108, pp. 116–126, 2018. DOI: 10.1016/j.ijfatigue.2017.12.005.
  • E. Breitbarth, and M. Besel, Fatigue crack deflection in cruciform specimens subjected to biaxial loading conditions, Int. J. Fatigue., vol. 113, pp. 345–350, 2018. DOI: 10.1016/j.ijfatigue.2018.04.021.
  • R. Baptista, V. Infante, and J. Marques, Algorithm for automatic fatigue crack growth simulation on welded high strength steels, Frat. Ed Integrità Strutt., vol. 13, no. 48, pp. 257–268, 2019. DOI: 10.3221/IGF-ESIS.48.27.
  • Y. Yang, and M. Vormwald, Fatigue crack growth simulation under cyclic non-proportional mixed mode loading, Int. J. Fatigue., vol. 102, pp. 37–47, 2017. DOI: 10.1016/j.ijfatigue.2017.04.014.
  • D. Floros, A. Ekberg, and F. Larsson, Evaluation of crack growth direction criteria on mixed-mode fatigue crack growth experiments, Int. J. Fatigue., vol. 129, pp. 105075, 2019. DOI: 10.1016/j.ijfatigue.2019.04.013.
  • E. Giner, N. Sukumar, F. D. Denia, and F. J. Fuenmayor, Extended finite element method for fretting fatigue crack propagation, Int. J. Solids Struct., vol. 45, no. 22–23, pp. 5675–5687, 2008. DOI: 10.1016/j.ijsolstr.2008.06.009.
  • I. V. Singh, B. K. Mishra, S. Bhattacharya, and R. U. Patil, The numerical simulation of fatigue crack growth using extended finite element method, Int. J. Fatigue., vol. 36, no. 1, pp. 109–119, 2012. DOI: 10.1016/j.ijfatigue.2011.08.010.
  • S. Kumar, I. V. Singh, and B. K. Mishra, A homogenized XFEM approach to simulate fatigue crack growth problems, Comput. Struct., vol. 150, pp. 1–22, 2015. DOI: 10.1016/j.compstruc.2014.12.008.
  • D. Infante-García, G. Qian, H. Miguélez, and E. Giner, Analysis of the effect of out-of-phase biaxial fatigue loads on crack paths in cruciform specimens using XFEM, Int. J. Fatigue., vol. 123, pp. 87–95, 2019. DOI: 10.1016/j.ijfatigue.2019.01.019.
  • F. Erdogan, and G. C. Sih, On the crack extension in plates under plane loading and transverse shear, J. Basic Eng., vol. 85, no. 4, pp. 519–525, 1963. DOI: 10.1115/1.3656897.
  • V. N. Shlyannikov, A. V. Tumanov, and A. P. Zakharov, The mixed mode crack growth rate in cruciform specimens subject to biaxial loading, Theor. Appl. Fract. Mech., vol. 73, pp. 68–81, 2014. DOI: 10.1016/j.tafmec.2014.06.016.
  • M. J. Jweeg, S. S. Hasan, and Y. Y. Kahtan, Experimental investigations of the cruciform specimen of GFRP16 under biaxial monotonic and cyclic loading, Int. J. Sci. Eng. Res., vol. 4, no. 12, pp. 494–501, 2013.
  • R. Xiao, X. Li, L. Lang, Y. Chen, and Y. Ge, Design of Biaxial Tensile Cruciform Specimen Based on Simulation Optimization, in: Proceedings of the 2015 2nd International Conference on Machinery, Materials Engineering, Chemical Engineering and Biotechnology, Atlantis Press, Paris, France, 2016. DOI: 10.2991/mmeceb-15.2016.37.
  • M. R. Ayatollahi, M. Dehghany, and M. Nejati, Fracture analysis of V-notched components - Effects of first non-singular stress term, Int. J. Solids Struct., vol. 48, no. 10, pp. 1579–1589, 2011. DOI: 10.1016/j.ijsolstr.2011.02.004.
  • M. V. Upadhyay, T. Panzner, S. Van Petegem, and H. Van Swygenhoven, Stresses and Strains in Cruciform Samples Deformed in Tension, Exp. Mech., vol. 57, no. 6, pp. 905–920, 2017. DOI: 10.1007/s11340-017-0270-6.
  • L. Novotný, Calculation of T-stress on 3D specimens with crack, Proc. Eng., vol. 48, pp. 489–494, 2012. DOI: 10.1016/j.proeng.2012.09.543.
  • J. Navarro-Zafra, J. L. Curiel-Sosa, and M. C. Serna Moreno, Three-dimensional static and dynamic analysis of a composite cruciform structure subjected to biaxial loading: a discontinuum approach, Appl. Compos. Mater., vol. 23, no. 2, pp. 139–154, 2016. DOI: 10.1007/s10443-015-9453-4.
  • R. F. Rango, L. G. Nallim, and S. Oller, An enriched macro finite element for the static analysis of thick general quadrilateral laminated composite plates, Mech. Adv. Mater. Struct., vol. 23, no. 10, pp. 1197–1206, 2016. DOI: 10.1080/15376494.2015.1068400.
  • S. Soghrati, A. M. Aragón, C. Armando Duarte, and P. H. Geubelle, An interface-enriched generalized FEM for problems with discontinuous gradient fields, Int. J. Numer. Meth. Eng., vol. 89, no. 8, pp. 991–1008, 2012. DOI: 10.1002/nme.3273.
  • L. Ai, and X. L. Gao, Evaluation of effective elastic properties of 3D printable interpenetrating phase composites using the meshfree radial point interpolation method, Mech. Adv. Mater. Struct., vol. 25, no. 15–16, pp. 1241–1251, 2018. DOI: 10.1080/15376494.2016.1143990.
  • C. H. Thai, H. Nguyen-Xuan, S. P. A. Bordas, N. Nguyen-Thanh, and T. Rabczuk, Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory, Mech. Adv. Mater. Struct., vol. 22, no. 6, pp. 451–469, 2015. DOI: 10.1080/15376494.2013.779050.
  • F. Rahmani, R. Kamgar, and R. Rahgozar, Optimum material distribution of porous functionally graded plates using Carrera unified formulation based on isogeometric analysis, Mech. Adv. Mater. Struct., vol. 0, pp. 1–15, 2021. DOI: 10.1080/15376494.2021.1881845.
  • C. Tao, and T. Dai, Large amplitude free vibration of porous skew and elliptical nanoplates based on nonlocal elasticity by isogeometric analysis, Mech. Adv. Mater. Struct., vol. 0, no. 0, pp. 1–32, 2021. DOI: 10.1080/15376494.2021.1873467.
  • Y. T. Gu, Meshfree methods and their comparisons, Int. J. Comput. Methods., vol. 02, no. 04, pp. 477–515, 2005. DOI: 10.1142/S0219876205000673.
  • J. X. Xu, F. Zhang, and D. H. Li, Accuracy improvement of XFEM using Wilson’s incompatible element technique, Mech. Adv. Mater. Struct., vol. 26, no. 5, pp. 443–450, 2019. DOI: 10.1080/15376494.2017.1400618.
  • P. Kumar, H. Pathak, and A. Singh, Fatigue crack growth behavior of thermo-mechanically processed AA 5754: experiment and extended finite element method simulation, Mech, Adv. Mater. Struct., vol. 28, no. 1, pp. 88–101, 2021. DOI: 10.1080/15376494.2018.1549294.
  • T. Belytschko, and T. Black, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Meth. Eng., vol. 45, no. 5, pp. 601–620, 1999. DOI: 10.1002/(SICI)1097-0207(19990620)45:5 < 601::AID-NME598 > 3.0.CO;2-S.
  • S. Mohammadi, Extended Finite Element Method for Isotropic Problems. Extended Finite Element Method, Blackwell Publishing Ltd, Oxford, pp. 61–116. DOI: 10.1002/9780470697795.ch3.
  • M. Leven, and D. Rickert, Stationary 3d crack analysis with abaqus xfem for integrity assessment of subsea equipment, Master’s thesis, in applied mechanics, Department of Applied Mechanics Division of Material and Computational Mechanics Chalmers University of Technology, Göteborg, Sweden, 2012.
  • S. A. Kanth, G. A. Harmain, and A. Jameel, Investigation of fatigue crack growth in engineering components containing different types of material irregularities by XFEM, Mech. Adv. Mater. Struct., vol. 0, pp. 1–39, 2021. DOI: 10.1080/15376494.2021.1907003.
  • A. Jameel, and G. A. Harmain, Modeling and Numerical Simulation of Fatigue Crack Growth in Cracked Specimens Containing Material Discontinuities, Strength Mater., vol. 48, no. 2, pp. 294–307, 2016. DOI: 10.1007/s11223-016-9765-0.
  • A. Jameel, and G. A. Harmain, Fatigue crack growth in presence of material discontinuities by EFGM, Int. J. Fatigue., vol. 81, pp. 105–116, 2015. DOI: 10.1016/j.ijfatigue.2015.07.021.
  • A. Jameel, and G. A. Harmain, Fatigue crack growth analysis of cracked specimens by the coupled finite element-element free Galerkin method, Mech. Adv. Mater. Struct., vol. 26, no. 16, pp. 1343–1356, 2019. DOI: 10.1080/15376494.2018.1432800.
  • A. Jameel, and G. A. Harmain, A coupled FE-IGA technique for modeling fatigue crack growth in engineering materials, Mech. Adv. Mater. Struct., vol. 26, no. 21, pp. 1764–1775, 2019. DOI: 10.1080/15376494.2018.1446571.
  • A. Jameel, and G. A. Harmain, Extended iso-geometric analysis for modeling three-dimensional cracks, Mech. Adv. Mater. Struct., vol. 26, no. 11, pp. 915–923, 2019. DOI: 10.1080/15376494.2018.1430275.
  • S. M. C. Monte, V. Infante, J. F. A. Madeira, and F. Moleiro, Optimization of fibers orientation in a composite specimen, Mech. Adv. Mater. Struct., vol. 24, no. 5, pp. 410–416, 2017. DOI: 10.1080/15376494.2016.1191099.
  • R. Baptista, R. A. Claudio, L. Reis, J. F. A. Madeira, I. Guelho, and M. Freitas, Optimization of cruciform specimens for biaxial fatigue loading with direct multi search, Theor. Appl. Fract. Mech., vol. 80, pp. 65–72, 2015. DOI: 10.1016/j.tafmec.2015.06.009.
  • R. Baptista, R. A. Cláudio, L. Reis, J. F. A. Madeira, and M. Freitas, Numerical study of in-plane biaxial fatigue crack growth with different phase shift angle loadings on optimal specimen geometries, Theor. Appl. Fract. Mech., vol. 85, pp. 16–25, 2016. DOI: 10.1016/j.tafmec.2016.08.025.
  • V. Infante, J. Madeira, R. B. Ruben, F. Moleiro, and S. T. de Freitas, Characterization and optimization of hybrid carbon–glass epoxy composites under combined loading, J. Compos. Mater., vol. 53, no. 18, pp. 2593–2605, 2019. DOI: 10.1177/0021998319834673.
  • J. Bigeon, S. Le Digabel, L. Salomon, DMulti-MADS: mesh adaptive direct multisearch for bound-constrained blackbox multiobjective optimization, Comput. Optim. Appl., vol. 79, no. 2, pp. 301–338, 2021, DOI: 10.1007/s10589-021-00272-9.
  • A. L. Custódio, J. F. A. Madeira, A. I. F. Vaz, and L. N. Vicente, Direct multisearch for multiobjective optimization, SIAM J. Optim., vol. 21, no. 3, pp. 1109–1140, 2011. DOI: 10.1137/10079731X.
  • K. Krishnapillai, R. Jones, Fatigue based 3D structural design optimisation implementing genetic algorithms and utilising the generalised Frost-Dugdale crack growth, in: Proc. 9th WSEAS Int. Conf. Evol. Comput., Port Spain, 2007: pp. 119–125.
  • K. Krishnapillai, and R. Jones, Three-dimensional structural design optimisation based on fatigue implementing a genetic algorithm and a non-similitude crack growth law, Finite Elem. Anal. Des., vol. 45, no. 2, pp. 132–146, 2009. DOI: 10.1016/j.finel.2008.08.002.
  • R. Brighenti, Patch repair design optimisation for fracture and fatigue improvements of cracked plates, Int. J. Solids Struct., vol. 44, no. 3–4, pp. 1115–1131, 2007. DOI: 10.1016/j.ijsolstr.2006.06.006.
  • N. E. Dowling, Mechanical Behavior of Materials, Engineering Methods for Deformation, Fracture, and Fatigue, 4th ed, Pearson, Essex, England, 2013.
  • M. O. Lai, and W. G. Ferguson, Fracture toughness of aluminium alloy 7075-T6 in the as-cast condition, Mater. Sci. Eng., vol. 74, no. 2, pp. 133–138, 1985. DOI: 10.1016/0025-5416(85)90426-4.
  • Y. Meng, H. Gao, Y. Yan, and L. Gao, Effects of phase difference and stress ratio on biaxial tension–tension fatigue crack propagation behavior of rolled ZK60 magnesium alloy, Mater. Today Commun., vol. 24, pp. 101159, 2020. DOI: 10.1016/j.mtcomm.2020.101159.
  • M. Duan, Y. Li, H. Liu, and Y. Shu, Fatigue crack behaviors under asynchronous biaxial loading, Int. J. Fatigue., vol. 126, pp. 248–257, 2019. DOI: 10.1016/j.ijfatigue.2019.05.006.
  • C. H. Wolf, S. Henkel, A. Burgold, Y. Qiu, M. Kuna, and H. Biermann, Fatigue crack growth in austenitic stainless steel: effects of phase shifted loading and crack paths, Adv. Eng. Mater., vol. 21, no. 5, pp. 1800861, 2019. DOI: 10.1002/adem.201800861.
  • P. Lopez-Crespo, et al., Overload effects on fatigue cracka-tip fields under plane stress conditions: Surface and bulk analysis, Fatigue Fract. Eng. Mater. Struct., vol. 36, no. 1, pp. 75–84, 2013. DOI: 10.1111/j.1460-2695.2012.01670.x.
  • A. Smits, D. Van Hemelrijck, T. P. Philippidis, and A. Cardon, Design of a cruciform specimen for biaxial testing of fibre reinforced composite laminates, Compos. Sci. Technol., vol. 66, no. 7–8, pp. 964–975, 2006. DOI: 10.1016/j.compscitech.2005.08.011.
  • D. Lecompte, A. Smits, H. Sol, J. Vantomme, and D. Van Hemelrijck, Mixed numerical-experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens, Int. J. Solids Struct., vol. 44, no. 5, pp. 1643–1656, 2007. DOI: 10.1016/j.ijsolstr.2006.06.050.
  • E. U. Lee, and R. E. Taylor, Fatigue behavior of aluminum alloys under biaxial loading, Eng. Fract. Mech., vol. 78, no. 8, pp. 1555–1564, 2011. DOI: 10.1016/j.engfracmech.2010.11.005.
  • S. Mall, and V. Y. Perel, Crack growth behavior under biaxial fatigue with phase difference, Int. J. Fatigue., vol. 74, pp. 166–172, 2015. DOI: 10.1016/j.ijfatigue.2015.01.005.
  • C. H. Wolf, S. Henkel, A. Burgold, Y. Qiu, M. Kuna, and H. Biermann, Investigation of fatigue crack growth under in-phase loading as well as phase-shifted loading using cruciform specimens, Int. J. Fatigue., vol. 124, pp. 595–617, 2019. DOI: 10.1016/j.ijfatigue.2019.03.011.
  • X. Yu, L. Li, and G. Proust, Fatigue crack growth of aluminium alloy 7075-T651 under proportional and non-proportional mixed mode I and II loads, Eng. Fract. Mech., vol. 174, pp. 155–167, 2017. DOI: 10.1016/j.engfracmech.2017.01.008.
  • V. M. Franco Correia, J. F. A. Madeira, A. L. Araújo, and C. M. Mota Soares, Multiobjective design optimization of laminated composite plates with piezoelectric layers, Compos. Struct., vol. 169, pp. 10–20, 2017. DOI: 10.1016/j.compstruct.2016.09.052.
  • B. N. Rao, and S. Rahman, An interaction integral method for analysis of cracks in orthotropic functionally graded materials, Comput. Mech., vol. 32, no. 1–2, pp. 40–51, 2003. DOI: 10.1007/s00466-003-0460-1.
  • H. Yu, and M. Kuna, Interaction integral method for computation of crack parameters K–T – A review, Eng. Fract. Mech., vol. 249, pp. 107722, 2021. DOI: 10.1016/j.engfracmech.2021.107722.
  • E. Giner, M. Sabsabi, J. J. Ródenas, and F. Fuenmayor, Direction of crack propagation in a complete contact fretting-fatigue problem, Int. J. Fatigue., vol. 58, pp. 172–180, 2014. DOI: 10.1016/j.ijfatigue.2013.03.001.
  • K. Tanaka, Fatigue crack propagation from a crack inclined to the cyclic tensile axis, Eng. Fract. Mech., vol. 6, no. 3, pp. 493-498, 1974. DOI: 10.1016/0013-7944(74)90007-1.
  • R. K. Neerukatti, S. Datta, A. Chattopadhyay, N. Iyyer, and N. Phan, Fatigue crack propagation under in-phase and out-of-phase biaxial loading, Fatigue Fract. Eng. Mater. Struct., vol. 41, no. 2, pp. 387–399, 2018. DOI: 10.1111/ffe.12690.
  • H. E. Misak, V. Y. Perel, V. Sabelkin, and S. Mall, Crack growth behavior of 7075-T6 under biaxial tension-tension fatigue, Int. J. Fatigue., vol. 55, pp. 158–165, 2013. DOI: 10.1016/j.ijfatigue.2013.06.003.
  • H. E. Misak, V. Y. Perel, V. Sabelkin, and S. Mall, Biaxial tension-tension fatigue crack growth behavior of 2024-T3 under ambient air and salt water environments, Eng. Fract. Mech., vol. 118, pp. 83–97, 2014. DOI: 10.1016/j.engfracmech.2014.02.003.
  • V. Giannella, G. Dhondt, C. Kontermann, and R. Citarella, Combined static-cyclic multi-axial crack propagation in cruciform specimens, Int. J. Fatigue., vol. 123, pp. 296–307, 2018. DOI: 10.1016/j.ijfatigue.2019.02.029.
  • M. Wang, C. F. Qian, B. J. Wu, S. H. Dai, and J. C. M. Li, Symmetric branching of mode ii and mixed-mode fatigue crack growth in a stainless steel, J. Eng. Mater. Technol. Trans. ASME., vol. 118, no. 3, pp. 356–361, 1996. DOI: 10.1115/1.2806818.
  • B. Wang, L. Xie, J. Song, B. Zhao, C. Li, and Z. Zhao, Curved fatigue crack growth prediction under variable amplitude loading by artificial neural network, Int. J. Fatigue., vol. 142, pp. 105886. DOI: 10.1016/j.ijfatigue.2020.105886.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.