213
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Development of refined one-dimensional finite element models using a nodal kinematics optimization method

ORCID Icon, & ORCID Icon
Pages 1962-1974 | Received 27 Jan 2022, Accepted 24 Feb 2022, Published online: 22 Mar 2022

References

  • L. Euler. De Curvis Elasticis, et al., Leonhard Euler’s elastic curves, Isis, vol. 20, pp. 72–160, 1933.
  • S.P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 41, no. 245, pp. 744–746, 1921. DOI: 10.1080/14786442108636264.
  • V.Z. Vlasov, Thin-walled elastic beams, National Technical Information Service, 1984.
  • P.O. Friberg, Beam element matrices derived from Vlasov’s theory of open thin-walled elastic beams, Int. J. Numer. Meth. Engng., vol. 21, no. 7, pp. 1205–1228, 1985. DOI: 10.1002/nme.1620210704.
  • R.D. Ambrosini, J.D. Riera, and R.F. Danesi, A modified Vlasov theory for dynamic analysis of thin-walled and variable open section beams, Eng. Struct., vol. 22, no. 8, pp. 890–900, 2000. DOI: 10.1016/S0141-0296(99)00043-7.
  • I. Mechab, N. El Meiche, and F. Bernard, Analytical study for the development of a new warping function for high order beam theory, Compos. Part B: Eng., vol. 119, pp. 18–31, 2017. DOI: 10.1016/j.compositesb.2017.03.006.
  • R. Schardt, Generalized beam theory-an adequate method for coupled stability problems, Thin Wall. Struct., vol. 19, no. 2–4, pp. 161–180, 1994. DOI: 10.1016/0263-8231(94)90027-2.
  • D. Camotim, C. Basaglia, and N. Silvestre, GBT buckling analysis of thin-walled steel frames: A state-of-the-art report, Thin Wall. Struct., vol. 48, no. 10–11, pp. 726–743, 2010. DOI: 10.1016/j.tws.2009.12.003.
  • N. Silvestre, and D. Camotim, On the mechanics of distortion in thin-walled open sections, Thin Wall. Struct., vol. 48, no. 7, pp. 469–481, 2010. DOI: 10.1016/j.tws.2010.02.001.
  • N. Silvestre, and D. Camotim, Shear deformable generalized beam theory for the analysis of thin-walled composite members, J. Eng. Mech., vol. 139, no. 8, pp. 1010–1024, 2013. DOI: 10.1061/(ASCE)EM.1943-7889.0000506.
  • S. de Miranda, A. Gutiérrez, R. Miletta, and F. Ubertini, A generalized beam theory with shear deformation, Thin Wall. Struct., vol. 67, pp. 88–100, 2013. DOI: 10.1016/j.tws.2013.02.012.
  • A. Genoese, A. Genoese, A. Bilotta, and G. Garcea, A generalized model for heterogeneous and anisotropic beams including section distortions, Thin Wall. Struct., vol. 74, pp. 85–103, 2014. DOI: 10.1016/j.tws.2013.09.019.
  • G. Garcea, et al., Deformation modes of thin-walled members: A comparison between the method of Generalized Eigenvectors and Generalized Beam Theory, Thin Wall. Struct., vol. 100, pp. 192–212, 2016. DOI: 10.1016/j.tws.2015.11.013.
  • W. Li, and H. Ma, A nonlinear cross-section deformable thin-walled beam finite element model with high-order interpolation of warping displacement, Thin Wall. Struct., vol. 152, pp. 106748, 2020. DOI: 10.1016/j.tws.2020.106748.
  • N. Peres, R. Gonçalves, and D. Camotim, A geometrically exact beam finite element for curved thin-walled bars with deformable cross-section, Comput. Methods Appl. Mech. Eng., vol. 381, pp. 113804, 2021. DOI: 10.1016/j.cma.2021.113804.
  • A.W. Ruggerini, A. Madeo, R. Gonçalves, D. Camotim, F. Ubertini, and S. de Miranda, GBT post-buckling analysis based on the Implicit Corotational Method, Int. J. Solids Struct., vol. 163, pp. 40–60, 2019. DOI: 10.1016/j.ijsolstr.2018.12.011.
  • E. Carrera, Theories and finite elements for multilayered, anisotropic, composite plates and shells, ARCO, vol. 9, no. 2, pp. 87–140, 2002. DOI: 10.1007/BF02736649.
  • E. Carrera, Theories and Finite Elements for Multilayered Plates and Shells: A Unified compact formulation with numerical assessment and benchmarking, ARCO, vol. 10, no. 3, pp. 215–296, 2003. DOI: 10.1007/BF02736224.
  • E. Carrera, and G. Giunta, Refined beam theories based on a unified formulation, Int. J. Appl. Mech., vol. 2, no. 1, pp. 117–143, 2010. DOI: 10.1142/S1758825110000500.
  • E. Carrera, and A. Pagani, Analysis of reinforced and thin-walled structures by multi-line refined 1D/beam models, Int. J. Mech. Sci., vol. 75, pp. 278–287, 2013. DOI: 10.1016/j.ijmecsci.2013.07.010.
  • E. Carrera, G. Giunta, and M. Petrolo, Beam Structures: Classical and Advanced Theories, John Wiley & Sons, Ltd., Chichester, UK, 2011.
  • E. Carrera, and M. Petrolo, Refined beam elements with only displacement variables and plate/shell capabilities, Meccanica, vol. 47, no. 3, pp. 537–556, 2012. DOI: 10.1007/s11012-011-9466-5.
  • A. Pagani, E. Carrera, R. Augello, and D. Scano, Use of Lagrange polynomials to build refined theories for laminated beams, plates and shells, Compos. Struct., vol. 276, pp. 114505, 2021. DOI: 10.1016/j.compstruct.2021.114505.
  • X. Xu, N. Fallahi, and H. Yang, Efficient CUF-based FEM analysis of thin-wall structures with Lagrange polynomial expansion, Mech. Adv. Mater. Struct., vol. 0, no. 0, pp. 1–22, 2020. DOI: 10.1080/15376494.2020.1818331.
  • E. Carrera, A. Pagani, and R. Augello, On the role of large cross-sectional deformations in the nonlinear analysis of composite thin-walled structures, Arch. Appl. Mech., vol. 91, no. 4, pp. 1605–1621, 2021. DOI: 10.1007/s00419-020-01843-8.
  • A. Pagani, and E. Carrera, Unified formulation of geometrically nonlinear refined beam theories, Mech. Adv. Mater. Struct., vol. 25, no. 1, pp. 15–31, 2018. DOI: 10.1080/15376494.2016.1232458.
  • A. Pagani, and E. Carrera, Large-deflection and post-buckling analyses of laminated composite beams by Carrera Unified Formulation, Compos. Struct., vol. 170, pp. 40–52, 2017. DOI: 10.1016/j.compstruct.2017.03.008.
  • E. Carrera, A.G. de Miguel, and A. Pagani, Hierarchical theories of structures based on Legendre polynomial expansions with finite element applications, Int. J. Mech. Sci., vol. 120, pp. 286–300, 2017. DOI: 10.1016/j.ijmecsci.2016.10.009.
  • A. García de Miguel, Hierarchical component-wise models for enhanced stress analysis and health monitoring of composites structures, Doctoral dissertation, Politecnico di Torino, 2019.
  • A. Pagani, A.G. de Miguel, and E. Carrera, Cross-sectional mapping for refined beam elements with applications to shell-like structures, Comput. Mech., vol. 59, no. 6, pp. 1031–1048, 2017. DOI: 10.1007/s00466-017-1390-7.
  • E. Carrera, A.G. de Miguel, and A. Pagani, Component-wise analysis of laminated structures by hierarchical refined models with mapping features and enhanced accuracy at layer to fiber-matrix scales, Mech. Adv. Mater. Struct., vol. 25, no. 14, pp. 1224–1238, 2018. DOI: 10.1080/15376494.2017.1396631.
  • A.G. de Miguel, G. De Pietro, E. Carrera, G. Giunta, and A. Pagani, Locking-free curved elements with refined kinematics for the analysis of composite structures, Comput. Methods Appl. Mech. Eng., vol. 337, pp. 481–500, 2018. DOI: 10.1016/j.cma.2018.03.042.
  • A.G. de Miguel, E. Carrera, A. Pagani, and E. Zappino, Accurate evaluation of interlaminar stresses in composite laminates via mixed one-dimensional formulation, AIAA J., vol. 56, no. 11, pp. 4582–4594, 2018. DOI: 10.2514/1.J057189.
  • A.G. de Miguel, A. Pagani, W. Yu, and E. Carrera, Micromechanics of periodically heterogeneous materials using higher-order beam theories and the mechanics of structure genome, Compos. Struct., vol. 180, pp. 484–496, 2017. DOI: 10.1016/j.compstruct.2017.08.025.
  • A.G. de Miguel, A. Pagani, and E. Carrera, Higher-order structural theories for transient analysis of multi-mode Lamb waves with applications to damage detection, J. Sound Vib., vol. 457, pp. 139–155, 2019. DOI: 10.1016/j.jsv.2019.05.053.
  • E. Carrera, and E. Zappino, One-dimensional finite element formulation with node-dependent kinematics, Comput. Struct., vol. 192, pp. 114–125, 2017. DOI: 10.1016/j.compstruc.2017.07.008.
  • G. Li, M. Cinefra, and E. Carrera, Coupled thermo-mechanical finite element models with node-dependent kinematics for multi-layered shell structures, Int. J. Mech. Sci., vol. 171, pp. 105379, 2020. DOI: 10.1016/j.ijmecsci.2019.105379.
  • E. Zappino, G. Li, and E. Carrera, Node-dependent kinematic elements for the dynamic analysis of beams with piezo-patches, J. Intell. Mater. Syst. Struct., vol. 29, no. 16, pp. 3333–3345, 2018. DOI: 10.1177/1045389X18798942.
  • E. Carrera, A. Pagani, and R. Augello, Mul Group Large deflection and post-buckling of thin-walled structures by finite elements with node-dependent kinematics, Acta Mech., vol. 232, no. 2, pp. 591–617, 2021. DOI: 10.1007/s00707-020-02857-7.
  • E. Carrera, E. Zappino, and G. Li, Analysis of beams with piezo-patches by node-dependent kinematic finite element method models, J. Intell. Mater. Syst. Struct., vol. 29, no. 7, pp. 1379–1393, 2018. DOI: 10.1177/1045389X17733332.
  • M. Filippi, E. Zappino, and E. Carrera, A node-dependent kinematic approach for rotordynamics problems, J. Eng. Gas Turbines Power, vol. 141, no. 6, pp. 4042285, 2019. DOI: 10.1115/1.4042285.
  • D. Guarnera, E. Zappino, A. Pagani, and E. Carrera, Finite elements with node dependent kinematics and scalable accuracy for the analysis of Stokes flows, Aerotec. Missili Spaz., vol. 97, no. 4, pp. 208–218, 2018. DOI: 10.1007/BF03406055.
  • E. Carrera, and F. Miglioretti, Selection of appropriate multilayered plate theories by using a genetic like algorithm, Compos. Struct., vol. 94, no. 3, pp. 1175–1186, 2012. DOI: 10.1016/j.compstruct.2011.10.013.
  • J. Yarasca, and J.L. Mantari, N-objective genetic algorithm to obtain accurate equivalent single layer models with layerwise capabilities for challenging sandwich plates, Aerosp. Sci. Technol., vol. 70, pp. 170–188, 2017. DOI: 10.1016/j.ast.2017.07.035.
  • J. Yarasca, J.L. Mantari, M. Petrolo, and E. Carrera, Best Theory Diagrams for cross-ply composite plates using polynomial, trigonometric and exponential thickness expansions, Compos. Struct., vol. 161, pp. 362–383, 2017. DOI: 10.1016/j.compstruct.2016.11.053.
  • J. Yarasca, J.L. Mantari, M. Petrolo, and E. Carrera, Multiobjective Best Theory Diagrams for cross-ply composite plates employing polynomial, zig-zag, trigonometric and exponential thickness expansions, Compos. Struct., vol. 176, pp. 860–876, 2017. DOI: 10.1016/j.compstruct.2017.05.055.
  • B. Szabó, and I. Babuška, Finite Element Analysis, John Wiley & Sons, Chichester, UK, 1991.
  • B. Szabó, A. Düster, and E. Rank, The p-Version of the Finite Element Method. In Encyclopedia of Computational Mechanics, John Wiley & Sons, Ltd., Chichester, UK, 2004.
  • E. Carrera, M. Cinefra, E. Zappino, and M. Petrolo, Finite Element Analysis of Structures through Unified Formulation, volume 9781119941, John Wiley & Sons, Ltd., Chichester, UK, 2014.
  • C.T. Sun, and K.M. Mao, A global-local finite element method suitable for parallel computations, Comput. Struct., vol. 29, no. 2, pp. 309–315, 1988. DOI: 10.1016/0045-7949(88)90264-7.
  • E. Carrera, E. Zappino, and G. Li, Finite element models with node-dependent kinematics for the analysis of composite beam structures, Compos. Part B: Eng., vol. 132, pp. 35–48, 2018. DOI: 10.1016/j.compositesb.2017.08.008.
  • J. Luis Mantari, J. Yarasca, M. Petrolo, and E. Carrera, On the effects of trigonometric and exponential terms on the best theory diagrams for metallic, multilayered, and functionally graded plates, Mech. Adv. Mater. Struct., vol. 27, no. 5, pp. 426–440, 2020. DOI: 10.1080/15376494.2018.1478048.
  • E. Carrera, F. Miglioretti, and M. Petrolo, Guidelines and recommendations on the use of higher order finite elements for bending analysis of plates, Int. J. Comput. Methods Eng. Sci. Mech., vol. 12, no. 6, pp. 303–324, 2011. DOI: 10.1080/15502287.2011.615792.
  • E. Carrera, and M. Petrolo, Guidelines and recommendations to construct theories for metallic and composite plates, AIAA J., vol. 48, no. 12, pp. 2852–2866, 2010. DOI: 10.2514/1.J050316.
  • D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1st ed., Addison-Wesley Longman Publishing Co., Inc., New York, NY, 1989.
  • A. Konak, D.W. Coit, and A.E. Smith, Multi-objective optimization using genetic algorithms: A tutorial, Reliab. Eng. Syst. Saf., vol. 91, no. 9, pp. 992–1007, 2006. DOI: 10.1016/j.ress.2005.11.018.
  • E. Carrera, A.G. de Miguel, and A. Pagani, Extension of MITC to higher-order beam models and shear locking analysis for compact, thin-walled, and composite structures, Int. J. Numer. Methods Eng., vol. 112, no. 13, pp. 1889–1908, 2017. DOI: 10.1002/nme.5588.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.