146
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of residual stresses in additively produced thermoelastic cylinder. Part I. Thermal fields

ORCID Icon & ORCID Icon
Pages 1975-1990 | Received 05 Nov 2021, Accepted 26 Feb 2022, Published online: 02 May 2022

References

  • J. P. Kruth, M. C. Leu, and T. Nakagawa, Progress in additive manufacturing and rapid prototyping, CIRP Ann. Manuf. Technol., vol. 47, no. 2, pp. 525–540, 1998. DOI: 10.1016/S0007-8506(07)63240-5.
  • G. N. Levy, R. Schindel, and J. P. Kruth, Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives, CIRP Ann., vol. 52, no. 2, pp. 589–609, 2003. DOI: 10.1016/S0007-8506(07)60206-6.
  • T. Vilaro, C. Colin, and J. D. Bartout, As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting, Metall. Mat. Trans. A, vol. 42, no. 10, pp. 3190–3199, 2011. DOI: 10.1007/s11661-011-0731-y.
  • T. DebRoy, et al., Additive manufacturing of metallic components–process, structure and properties, Prog. Mater. Sci., vol. 92, pp. 112–224, 2018. DOI: 10.1016/j.pmatsci.2017.10.001.
  • R. Miralbes, D. Ranz, F. J. Pascual, D. Zouzias, and M. Maza, Characterization of additively manufactured triply periodic minimal surface structures under compressive loading, Mech. Adv. Mater. Struct., pp. 1–5, 2020. DOI: 10.1080/15376494.2020.1842948.
  • N. Lebaal, A. SettaR, S. Roth, and S. Gomes, Conjugate heat transfer analysis within in lattice-filled heat exchanger for additive manufacturing, Mech. Adv. Mater. Struct., pp. 1–9, 2020. DOI: 10.1080/15376494.2020.1819489.
  • A. Hobiny, and I. A. Abbas, Analytical solutions of photo-thermo-elastic waves in a non-homogenous semiconducting material, Results Phys., vol. 10, pp. 385–390, 2018. DOI: 10.1016/j.rinp.2018.06.035.
  • I. A. Abbas, F. S. Alzahrani, and A. Elaiw, A DPL model of photothermal interaction in a semiconductor material, Waves Random Complex Media, vol. 29, no. 2, pp. 328–343, 2019. DOI: 10.1080/17455030.2018.1433901.
  • A. D. Hobiny, and I. A. Abbas, Theoretical analysis of thermal damages in skin tissue induced by intense moving heat source, Int. J. Heat Mass Transf., vol. 124, pp. 1011–1014, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.04.018.
  • A. Safa, L. Hadji, M. Bourada, and N. Zouatnia, Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory, Earthq. Struct., vol. 17, no. 3, pp. 329–336, 2019. DOI: 10.12989/eas.2019.17.3.329.
  • Z. Abdelhak, L. Hadji, T. H. Daouadji, and E. A. Bedia, Thermal buckling of functionally graded plates using a n-order four variable refined theory, Adv. Mater. Res., vol. 4, no. 1, pp. 31–44, 2015. DOI: 10.12989/amr.2015.4.4.031.
  • L. Hadji, and F. Bernard, Bending and free vibration analysis of functionally graded beams on elastic foundations with analytical validation, Adv. Mater. Res., vol. 9, no. 1, pp. 63–98, 2020. DOI: 10.12989/amr.2020.9.1.063.
  • I. M. Mudhaffar, A. Tounsi, A. Chikh, M. A. Al-Osta, M. M. Al-Zahrani, and S. U. Al-Dulaijan, Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation. In: Structures, vol. 33, pp. 2177–2189, 2021. DOI: 10.1016/j.istruc.2021.05.090.
  • J. P. Kruth, J. Deckers, E. Yasa, and R. Wauthlé, Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method, Proc. Inst. Mech. Eng. B J. Eng. Manuf., vol. 226, no. 6, pp. 980–991, 2012. DOI: 10.1177/0954405412437085.
  • D. Buchbinder, W. Meiners, N. Pirch, K. Wissenbach, and J. Schrage, Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting, J. Laser Appl., vol. 26, no. 1, pp. 012004, 2014. DOI: 10.2351/1.4828755.
  • M. F. Zaeh, and G. Branner, Investigations on residual stresses and deformations in selective laser melting, Prod. Eng. Res. Dev., vol. 4, no. 1, pp. 35–45, 2010. DOI: 10.1007/s11740-009-0192-y.
  • A. Yavari, A geometric theory of growth mechanics, J Nonlinear Sci., vol. 20, no. 6, pp. 781–830, 2010. DOI: 10.1007/s00332-010-9073-y.
  • NKh. Arutyunyan, A. D. Drozdov, and V. E. Naumov, Mechanics of growing viscoelastoplastic bodies, 1987.
  • S. A. Lychev, and A. V. Manzhirov, The mathematical theory of growing bodies. Finite deformations, J. Appl. Math. Mech., vol. 77, no. 4, pp. 421–432, 2013. DOI: 10.1016/j.jappmathmech.2013.11.011.
  • S. A. Lychev, and K. Koifman, Geometry of Incompatible Deformations: Differential Geometry in Continuum Mechanics, De Gruyter, Germany, 2018.
  • S. A. Lychev, Geometric aspects of the theory of incompatible deformations in growing solids. Mechanics for Materials and Technologies, Springer, Cham, pp. 327–347, 2017. DOI: 10.1007/978-3-319-56050-2_19.
  • A. Yavari, and A. Goriely, Riemann–Cartan geometry of nonlinear dislocation mechanics, Arch. Ration. Mech. Anal., vol. 205, no. 1, pp. 59–118, 2012. DOI: 10.1007/s00205-012-0500-0.
  • G. Ferrarese, and D. Bini, Introduction to Relativistic Continuum Mechanics, Springer Nature, Switzerland, 2007.
  • S. A. Lychev, and A. V. Manzhirov, Discrete and continuous growth of hollow cylinder. Finite deformations, In Proceedings of the World Congress on Engineering, vol. 2, pp. 1327–1332, 2014.
  • S. A. Lychev, A. Manzhirov, M. Shatalov, and I. Fedotov, Transient temperature fields in growing bodies subject to discrete and continuous growth regimes, Procedia IUTAM, vol. 23, pp. 120–129, 2017. DOI: 10.1016/j.piutam.2017.06.012.
  • S. A. Lychev, and K. Koifman, Nonlinear evolutionary problem for a laminated inhomogeneous spherical shell, Acta Mech., vol. 230, no. 11, pp. 3989–4020, 2019. DOI: 10.1007/s00707-019-02399-7.
  • S. A. Lychev, and A. V. Manzhirov, Reference configurations of growing bodies, Mech. Solids., vol. 48, no. 5, pp. 553–560, 2013. DOI: 10.3103/S0025654413050117.
  • S. A. Lychev, Universal deformations of growing solids, Mech. Solids., vol. 46, no. 6, pp. 863–876, 2011. DOI: 10.3103/S0025654411060069.
  • M. I. A. Othman, M. Fekry, and M. Marin, Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating, Struct. Eng. Mech., vol. 73, no. 6, pp. 621–629, 2020. DOI: 10.12989/sem.2020.73.6.621.
  • M. I. A. Othman, and M. Fekry, Effect of magnetic field on generalized thermo-viscoelastic diffusion medium with voids, Int. J. Struct. Stab. Dyn., vol. 16, no. 07, pp. 1550033, 2016. DOI: 10.1142/S0219455415500339.
  • A. L. Levitin, S. A. Lychev, A. V. Manzhirov, and M. Y. Shatalov, Nonstationary vibrations of a discretely accreted thermoelastic parallelepiped, Mech. Solids., vol. 47, no. 6, pp. 677–689, 2012. DOI: 10.3103/S0025654412060106.
  • A. Von Meier, Electric Power Systems: A Conceptual Introduction, John Wiley and Sons, New York City, United States, 2006.
  • P. Lorrain, and D. R. Corson, Electromagnetic Fields and Waves, w. H. Freeman and Company New York, 1970.
  • W. L. Weeks, Transmission and Distribution of Electrical Energy, Harpercollins, Harpercollins, New York City, United States, 1981.
  • M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions, US Department of Commerce, Washington, D.C., United States, 1972.
  • A. Jordan, A. Szybiak, M. Benmouna, and A. Barka, Temperature distribution in a cylindrical conductor with skin effect, Int. J. Heat Mass Transf., vol. 30, no. 7, pp. 1539–1541, 1987. DOI: 10.1016/0017-9310(87)90185-2.
  • A. Vander Vorst, A. Rosen, and Y. Kotsuka, RF/Microwave Interaction with Biological Tissues, John Wiley and Sons, New York City, United States, 2006.
  • A. D. Polyanin, and S. A. Lychev, Decomposition methods for coupled 3D equations of applied mathematics and continuum mechanics: Partial survey, classification, new results, and generalizations, Appl. Math. Model., vol. 40, no. 4, pp. 3298–3324, 2016. DOI: 10.1016/j.apm.2015.10.016.
  • F. Bowman, Introduction to Bessel Functions, Courier Corporation, Dover Publications, New York City, United States, 2012.
  • M. J. Donachie, Titanium: A Technical Guide, ASM International, Almere, Netherlands, 2000.
  • S. A. Lychev, and M. Fekry, Evaluation of residual stresses in additively produced thermoelastic cylinder. Part II. Residual stresses, Mech. Adv. Mater. Struct., 2022. DOI: 10.1080/15376494.2022.2048324.
  • S. A. Lychev, G. V. Kostin, K. G. Koifman, and T. N. Lycheva, Modeling and optimization of layer-by-layer structures. In Journal of Physics: Conference Series, Vol. 1009, No. 1, pp. 012014–012050, 2018. DOI: 10.1088/1742-6596/1009/1/012014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.